11.16 Consider the following transportation problem. What is the cost minimizing distribution plan? Please show your selections in Solver. Design Parameters Per Unit Shipping Cost Des MoinesKansas...

1 answer below »
see attached


11.16 Consider the following transportation problem. What is the cost minimizing distribution plan? Please show your selections in Solver. Design Parameters Per Unit Shipping Cost Des MoinesKansas CitySt.LouisSupply Jefferson City$14.00$16.00$7.0030 Omaha$8.00$10.00$5.0020 Demand251510 Model Des MoinesKansas CitySt.LouisTotal Shipped Jefferson City000 Omaha000 Total Shipped Total Cost Solution Parameters Per Unit Shipping Cost Des MoinesKansas CitySt.LouisSupply Jefferson City$14.00$16.00$7.0030 Omaha$8.00$10.00$5.0020 Demand251510 Model Des MoinesKansas CitySt.LouisTotal Shipped Jefferson City000 Omaha000 Total Shipped Total Cost 11.18. The following gives the demand in 10 cities for power supplied from Los Angeles, Tulsa and Seattle power plants, as well as the associated distribution costs. Aggie Power Parameters Distribution Costs Los AngelesTulsaSeattleDemand Requested (Mwatts) Seattle$ 356.25$ 593.75$ 59.38950 Portland$ 356.25$ 593.75$ 178.13831.25 San Francisco$ 178.13$ 475.00$ 296.882375 Boise$ 356.25$ 475.00$ 296.88593.75 Reno$ 237.50$ 475.00$ 356.25950 Bozeman$ 415.63$ 415.63$ 296.88593.75 Laramie$ 356.25$ 415.63$ 356.251187.5 Park City$ 356.25$ 356.25$ 475.00712.5 Flagstaff$ 178.13$ 475.00$ 593.751187.5 Durango$ 356.25$ 296.88$ 593.751543.75 A. If there are no restrictions on the amount supplied from any power plant, what is the solution that minimizes the distribution costs and meets demand in each city? What is the minimized cost? Model Los AngelesTulsaSeattleTotal Seattle Portland San Francisco Boise Reno Bozeman Laramie Park City Flagstaff Durango Total Cost B. If at most 4000 can be supplied by any one of the power plants, what is the solution? By how much does the costs increase? Please show your selections in Solver. Plant Capacity4000 Model Los AngelesTulsaSeattleTotal Seattle Portland San Francisco Boise Reno Bozeman Laramie Park City Flagstaff Durango Total Cost 11.19. Calhoun Mills needs to decide on a production schedule. There are two looms: Dobbie and Regular, and 15 fabrics. Demand for fabrics are shown, as well as the variable cost for each fabric. Rate of production for each fabric on each type of loom is also given. There are 90 regular looms and 15 Dobbie looms. They need to know how to allocate the looms to the fabrics and which fabrics to purchase outside to minimize the demand. What is the minimized total cost? Please show your selections in Solver. Parameters DobbieRegular FabricDemand (yd)Dobbie Rate (yd/hr)Regular Rate (yd/hr)Hrs./Yd.Hrs./Yd.Mill Cost ($/yd)Cost to purchase outside ($/yd) 1165004.650.000.660.80 2520004.650.000.560.70 3450004.650.000.660.85 4220004.650.000.550.70 5765005.195.190.610.75 61100003.813.810.620.75 71220004.194.190.650.80 8620005.235.230.490.60 975005.235.230.500.70 10690005.235.230.440.60 11700003.733.730.640.80 12820004.194.190.570.75 13100004.444.440.500.65 143800005.235.230.310.45 15620004.194.190.500.70 Hours Available Dobbie Regular Model Hrs.Hrs. FabricDobbieRegularPurchase OutsideTotalCostUsedLeftover 1Dobbie Hrs. 2Reg. Hrs. 3 4 5 6 7 8 9 10 11 12 13 14 15 Total 12.5. Grave City is considering the relocation of police substatitions to obtain better enforcement. Below shows which ares each substation serves. Formulate an integer programming model to find the minimum number of substations to serve all areas. Which are these substations? Please show your selections in Solver. Parameters Substation ABCDEFG Area 11110001 Area 20101000 Area 30010100 Area 40001110 Area 51111011 Area 60000111 Area 71100001 Model ABCDEFGTotal Select? Times Covered Area 1 Area 2 Area 3 Area 4 Area 5 Area 6 Area 7 12.14. Burnside Marketing conducted a study on several formulations for a new cereal. They are trying to determine three attributes: Low or high for Wheat/Corn, Sugar, Honey or artificial for Sweetner, and Present or Absent Flavor Bits. Below shows the level of satisdaction 7 children gets from each selection, as well as the total for their current favorite. Which design will maximize the share of choice for seven children in the sample? In other words, which design will capture most children? Which children will prefer the new design over their current favorite? Please show your selections in Solver. Parameters Wheat/CornSweetnerFlavor Bits ChildLow HighSugarHoneyArtificialPresentAbsentCurrent Favorite 1153530402515975 2302040353581175 3402520401071475 43530252030151875 52540402035181475 6202520353091675 73015254040201175 Model Low HighSugarHoneyArtificialPresentAbsent Level Choice Level Sums ChildUtilityCaptured?Hurdle 1 2 3 4 5 6 7 Share of Choice B. Repeat a with revised levels for current favorites, shown below. Parameters Wheat/CornSweetnerFlavor Bits ChildLow HighSugarHoneyArtificialPresentAbsentCurrent Favorite 1153530402515970 2302040353581170 3402520401071470 43530252030151870 52540402035181480 6202520353091680 73015254040201180 Model Low HighSugarHoneyArtificialPresentAbsent Level Choice Level Sums ChildUtilityCaptured?Hurdle 1 2 3 4 5 6 7 Share of Choice 12.19. East Coast Trucking provides services to cities in row 47 from regional offices located in column A below. Number of miles in between are shown below. Company is constructing service facilities in some regional offices. Each regional office must be within 400 miles of a service facility. Formulate an integer linear programming to determine the minimum number of service facilities. Identify their locations. Please show your selections in Solver. Parameters BostonNew YorkPhiladelphiaBaltimoreWashingtonRichmondRaleighFlorenceSavannahJacksonvilleTampaMiami Boston02113204244595657138841056119613991669 New York211010921324835450267384598511881458 Philadelphia320109010413924539356473687610791349 Baltimore4242131040351412894606327729751245 Washington4592481393501062544255977379401210 Richmond56535424514110601483194916318341104 Raleigh7135023932892541480171343483686956 Florence8846735644604253191710172312515785 Savannah10568457366325974913431720140343613 Jacksonville11969858767727376314833121400203473 Tampa1399118810799759408346865153432030270 Miami1669145813491245121011049567856134732700 Service Requirement400 Model BostonNew YorkPhiladelphiaBaltimoreWashingtonRichmondRaleighFlorenceSavannahJacksonvilleTampaMiamicovered? Boston New York Philadelphia Baltimore Washington Richmond Raleigh Florence Savannah Jacksonville Tampa Miami BostonNew YorkPhiladelphiaBaltimoreWashingtonRichmondRaleighFlorenceSavannahJacksonvilleTampaMiami Selected? total C. How will your answer change if service requirement is changed to 300? Parameters BostonNew YorkPhiladelphiaBaltimoreWashingtonRichmondRaleighFlorenceSavannahJacksonvilleTampaMiami Boston02113204244595657138841056119613991669 New York211010921324835450267384598511881458 Philadelphia320109010413924539356473687610791349 Baltimore4242131040351412894606327729751245 Washington4592481393501062544255977379401210 Richmond56535424514110601483194916318341104 Raleigh7135023932892541480171343483686956 Florence8846735644604253191710172312515785 Savannah10568457366325974913431720140343613 Jacksonville11969858767727376314833121400203473 Tampa1399118810799759408346865153432030270 Miami1669145813491245121011049567856134732700 Service Requirement300 Model BostonNew YorkPhiladelphiaBaltimoreWashingtonRichmondRaleighFlorenceSavannahJacksonvilleTampaMiamiCovered? Boston New York Philadelphia Baltimore Washington Richmond Raleigh Florence Savannah Jacksonville Tampa Miami BostonNew YorkPhiladelphiaBaltimoreWashingtonRichmondRaleighFlorenceSavannahJacksonvilleTampaMiamiTotal Selected? 1 2 3 4 5 6 7 8 9 A B C D Consider the following transportation problem. What is the cost minimizing distribution plan? Please show your selections in Solver. Design Parameters Per Unit Shipping Cost Des Moines Kansas City St.Louis Jefferson City $14.00 $16.00 $7.00 Omaha $8.00 $10.00 $5.00 Demand 25 15 10
Answered Same DayJun 03, 2021

Answer To: 11.16 Consider the following transportation problem. What is the cost minimizing distribution plan?...

Himanshu answered on Jun 04 2021
147 Votes
11.16
    Consider the following transportation problem.
    What is the cost minimizing distribution plan? Please show your selections in Solver.
    Design
    Parameters
        Per Unit Shipping Cost
        Des Moines    Kansas City    St.Louis    Supply
    Jefferson City    $14.00    $16.00    $7.00    30
    Omaha    $8.00    $10.00    $5.00    20
    Demand    25    15    10
    Model
        Des Moines    Kansas City    St.Louis    Total Shipped
    Jefferson City    0    0    0    
    Omaha    0    0    0    
    Total Shipped                   
    Total Cost    
    Solution                                    Total demand    50
    Parameters                                    Total supply    50
        Per Unit Shipping Cost                                Balanced Problem
        Des Moines    Kansas City    St.Louis    Supply
    Jefferson City    $14.00    $16.00    $7.00    30
    Omaha    $8.00    $10.00    $5.00    20
    Demand    25    15    10
    Model
        Des Moines    Kansas City    St.Louis    LHS    RHS
    Jefferson City    20    0    10    30    30
    Omaha    5    15    0    20    20
    LHS    25    15    10    
    RHS    25    15    10
    Total Cost    $540
Answer Report 1
    Microsoft Excel 14.0 Answer Report
    Worksheet: [Solution 85785.xlsx]11.16
    Report Created: 04-06-2021 05:19:27
    Result: Solver found a solution. All Constraints and optimality conditions are satisfied.
    Solver Engine
        Engine: Simplex LP
        Solution Time: 0.046 Seconds.
        Iterations: 6 Subproblems: 0
    Sol
ver Options
        Max Time Unlimited, Iterations Unlimited, Precision 0.000001
        Max Subproblems Unlimited, Max Integer Sols Unlimited, Integer Tolerance 1%, Assume NonNegative
    Objective Cell (Min)
        Cell    Name    Original Value    Final Value
        $B$41    Total Cost Des Moines    ₹0    ₹540
    Variable Cells
        Cell    Name    Original Value    Final Value    Integer
        $B$36    Jefferson City Des Moines    0    20    Contin
        $C$36    Jefferson City Kansas City    0    0    Contin
        $D$36    Jefferson City St.Louis    0    10    Contin
        $B$37    Omaha Des Moines    0    5    Contin
        $C$37    Omaha Kansas City    0    15    Contin
        $D$37    Omaha St.Louis    0    0    Contin
    Constraints
        Cell    Name    Cell Value    Formula    Status    Slack
        $B$38    LHS Des Moines    25    $B$38=$B$39    Binding    0
        $C$38    LHS Kansas City    15    $C$38=$C$39    Binding    0
        $D$38    LHS St.Louis    10    $D$38=$D$39    Binding    0
        $E$36    Jefferson City LHS    30    $E$36=$F$36    Binding    0
        $E$37    Omaha LHS    20    $E$37=$F$37    Binding    0
11.18.
    The following gives the demand in 10 cities for power supplied from Los Angeles, Tulsa and Seattle power plants, as well as the associated distribution costs.
    
    Aggie Power
    Parameters
        Distribution Costs
        Los Angeles    Tulsa    Seattle    Demand Requested (Mwatts)
    Seattle    $ 356.25    $ 593.75    $ 59.38    950
    Portland    $ 356.25    $ 593.75    $ 178.13    831.25
    San Francisco    $ 178.13    $ 475.00    $ 296.88    2375
    Boise    $ 356.25    $ 475.00    $ 296.88    593.75
    Reno    $ 237.50    $ 475.00    $ 356.25    950
    Bozeman    $ 415.63    $ 415.63    $ 296.88    593.75
    Laramie    $ 356.25    $ 415.63    $ 356.25    1187.5
    Park City    $ 356.25    $ 356.25    $ 475.00    712.5
    Flagstaff    $ 178.13    $ 475.00    $ 593.75    1187.5
    Durango    $ 356.25    $ 296.88    $ 593.75    1543.75
    A. If there are no restrictions on the amount supplied from any power plant, what is the solution that minimizes the distribution costs and meets demand in each city? What is the minimized cost?
    Model
        Los Angeles    Tulsa    Seattle    LHS    Demand
    Seattle    0    0    950    950    950
    Portland    0    0    831.25    831.25    831.25        Demand
    San Francisco    2375    0    0    2375    2375        Supply
    Boise    0    0    593.75    593.75    593.75
    Reno    950    0    0    950    950
    Bozeman    0    0    593.75    593.75    593.75
    Laramie    1187.5    0    0    1187.5    1187.5
    Park City    0    712.5    0    712.5    712.5
    Flagstaff    1187.5    0    0    1187.5    1187.5
    Durango    0    1543.75    0    1543.75    1543.75
    Total    5700    2256.25    2968.75
    Cost    $2,552,382.81
    B. If at most 4000 can be supplied by any one of the power plants, what is the solution? By how much does the costs increase? Please show your selections in Solver.
    Plant Capacity    4000
    Model
        Los Angeles    Tulsa    Seattle    LHS
    Seattle    0    0    950    950    950
    Portland    0    0    831.25    831.25    831.25
    San Francisco    2375    0    0    2375    2375                Cost increase    60,859.375
    Boise    0    0    593.75    593.75    593.75
    Reno    437.5    0    512.5    950    950
    Bozeman    0    0    593.75    593.75    593.75
    Laramie    0    0    1187.5    1187.5    1187.5
    Park City    0    712.5    0    712.5    712.5
    Flagstaff    1187.5    0    0    1187.5    1187.5
    Durango    0    1543.75    0    1543.75    1543.75
    LHS    4000    2256.25    4668.75
    Cost    $2,613,242.19
    
Answer Report 2
    Microsoft Excel 14.0 Answer Report
    Worksheet: [Solution 85785.xlsx]11.18.
    Report Created: 04-06-2021 05:26:59
    Result: Solver found a solution. All Constraints and optimality conditions are satisfied.
    Solver Engine
        Engine: Simplex LP
        Solution Time: 0.015 Seconds.
        Iterations: 17 Subproblems: 0
    Solver Options
        Max Time Unlimited, Iterations Unlimited, Precision 0.000001, Use Automatic Scaling
        Max Subproblems Unlimited, Max Integer Sols Unlimited, Integer Tolerance 1%, Assume NonNegative
    Objective Cell (Min)
        Cell    Name    Original Value    Final Value
        $B$35    Cost Los Angeles    ₹0.00    ₹2,552,382.81
    Variable Cells
        Cell    Name    Original Value    Final Value    Integer
        $B$22    Seattle Los Angeles    0    0    Contin
        $C$22    Seattle Tulsa    0    0    Contin
        $D$22    Seattle Seattle    0    950    Contin
        $B$23    Portland Los Angeles    0    0    Contin
        $C$23    Portland Tulsa    0    0    Contin
        $D$23    Portland Seattle    0    831.25    Contin
        $B$24    San Francisco Los Angeles    0    2375    Contin
        $C$24    San Francisco Tulsa    0    0    Contin
        $D$24    San Francisco Seattle    0    0    Contin
        $B$25    Boise Los Angeles    0    0    Contin
        $C$25    Boise Tulsa    0    0    Contin
        $D$25    Boise Seattle    0    593.75    Contin
        $B$26    Reno Los Angeles    0    950    Contin
        $C$26    Reno Tulsa    0    0    Contin
        $D$26    Reno Seattle    0    0    Contin
        $B$27    Bozeman Los Angeles    0    0    Contin
        $C$27    Bozeman Tulsa    0    0    Contin
        $D$27    Bozeman Seattle    0    593.75    Contin
        $B$28    Laramie Los Angeles    0    1187.5    Contin
        $C$28    Laramie Tulsa    0    0    Contin
        $D$28    Laramie Seattle    0    0    Contin
        $B$29    Park City Los Angeles    0    0    Contin
        $C$29    Park City Tulsa    0    712.5    Contin
        $D$29    Park City Seattle    0    0    Contin
        $B$30    Flagstaff Los Angeles    0    1187.5    Contin
        $C$30    Flagstaff Tulsa    0    0    Contin
        $D$30    Flagstaff Seattle    0    0    Contin
        $B$31    Durango Los Angeles    0    0    Contin
        $C$31    Durango Tulsa    0    1543.75    Contin
        $D$31    Durango Seattle    0    0    Contin
    Constraints
        Cell    Name    Cell Value    Formula    Status    Slack
        $E$22    Seattle LHS    950    $E$22=$F$22    Binding    0
        $E$23    Portland LHS    831.25    $E$23=$F$23    Binding    0
        $E$24    San Francisco LHS    2375    $E$24=$F$24    Binding    0
        $E$25    Boise LHS    593.75    $E$25=$F$25    Binding    0
        $E$26    Reno LHS    950    $E$26=$F$26    Binding    0
        $E$27    Bozeman LHS    593.75    $E$27=$F$27    Binding    0
        $E$28    Laramie LHS    1187.5    $E$28=$F$28    Binding    0
        $E$29    Park City LHS    712.5    $E$29=$F$29    Binding    0
        $E$30    Flagstaff LHS    1187.5    $E$30=$F$30    Binding    0
        $E$31    Durango LHS    1543.75    $E$31=$F$31    Binding    0
Answer Report 3
    Microsoft Excel 14.0 Answer Report
    Worksheet: [Solution 85785.xlsx]11.18.
    Report Created: 04-06-2021 05:33:23
    Result: Solver found a solution. All Constraints and optimality conditions are satisfied.
    Solver Engine
        Engine: Simplex LP
        Solution Time: 0.015 Seconds.
        Iterations: 22 Subproblems: 0
    Solver Options
        Max Time Unlimited, Iterations Unlimited, Precision 0.000001, Use Automatic Scaling
        Max Subproblems Unlimited, Max Integer Sols Unlimited, Integer Tolerance 1%, Assume NonNegative
    Objective Cell (Min)
        Cell    Name    Original Value    Final Value
        $B$55    Cost Los Angeles    ₹0.00    ₹2,613,242.19
    Variable Cells
        Cell    Name    Original Value    Final Value    Integer
        $B$42    Seattle Los Angeles    0    0    Contin
        $C$42    Seattle Tulsa    0    0    Contin
        $D$42    Seattle Seattle    0    950    Contin
        $B$43    Portland Los Angeles    0    0    Contin
        $C$43    Portland Tulsa    0    0    Contin
        $D$43    Portland Seattle    0    831.25    Contin
        $B$44    San Francisco Los Angeles    0    2375    Contin
        $C$44    San Francisco Tulsa    0    0    Contin
        $D$44    San Francisco Seattle    0    0    Contin
        $B$45    Boise Los Angeles    0    0    Contin
        $C$45    Boise Tulsa    0    0    Contin
        $D$45    Boise Seattle    0    593.75    Contin
        $B$46    Reno Los Angeles    0    437.5    Contin
        $C$46    Reno Tulsa    0    0    Contin
        $D$46    Reno Seattle    0    512.5    Contin
        $B$47    Bozeman Los Angeles    0    0    Contin
        $C$47    Bozeman Tulsa    0    0    Contin
        $D$47    Bozeman Seattle    0    593.75    Contin
        $B$48    Laramie Los Angeles    0    0    Contin
        $C$48    Laramie Tulsa    0    0    Contin
        $D$48    Laramie Seattle    0    1187.5    Contin
        $B$49    Park City Los Angeles    0    0    Contin
        $C$49    Park City Tulsa    0    712.5    Contin
        $D$49    Park City Seattle    0    0    Contin
        $B$50    Flagstaff Los Angeles    0    1187.5    Contin
        $C$50    Flagstaff Tulsa    0    0    Contin
        $D$50    Flagstaff Seattle    0    0    Contin
        $B$51    Durango Los Angeles    0    0    Contin
        $C$51    Durango Tulsa    0    1543.75    Contin
        $D$51    Durango Seattle    0    0    Contin
    Constraints
        Cell    Name    Cell Value    Formula    Status    Slack
        $B$52    LHS Los Angeles    4000    $B$52<=4000    Binding    0
        $E$42    Seattle LHS    950    $E$42=$F$42    Binding    0
        $E$43    Portland LHS    831.25    $E$43=$F$43    Binding    0
        $E$44    San Francisco LHS    2375    $E$44=$F$44    Binding    0
        $E$45    Boise LHS    593.75    $E$45=$F$45    Binding    0
        $E$46    Reno LHS    950    $E$46=$F$46    Binding    0
        $E$47    Bozeman LHS    593.75    $E$47=$F$47    Binding    0
        $E$48    Laramie LHS    1187.5    $E$48=$F$48    Binding    0
        $E$49    Park City LHS    712.5    $E$49=$F$49    Binding    0
        $E$50    Flagstaff LHS    1187.5    $E$50=$F$50    Binding    0
        $E$51    Durango LHS    1543.75    $E$51=$F$51    Binding    0
11.19.
    Calhoun Mills needs to decide on a production schedule.
    There are two looms: Dobbie and Regular, and 15 fabrics. Demand for fabrics are shown, as well as the variable cost for each fabric. Rate of production for each fabric on each type of loom is also given.
    There are 90 regular looms and 15 Dobbie looms.
     They need to know how to allocate the looms to the fabrics and which fabrics to purchase outside to minimize the demand. What is the minimized total cost?
    Please show your selections in Solver.
    Parameters
                    Dobbie    Regular
    Fabric    Demand (yd)    Dobbie Rate (yd/hr)    Regular Rate (yd/hr)    Hrs./Yd.    Hrs./Yd.    Mill Cost ($/yd)    Cost to purchase outside ($/yd)
    1    16500    4.65    0.00    0.21    0.00    0.66    0.80
    2    52000    4.65    0.00    0.21    0.00    0.56    0.70
    3    45000    4.65    0.00    0.21    0.00    0.66    0.85
    4    22000    4.65    0.00    0.21    0.00    0.55    0.70
    5    76500    5.19    5.19    0.19    0.19    0.61    0.75
    6    110000    3.81    3.81    0.26    0.26    0.62    0.75
    7    122000    4.19    4.19    0.24    0.24    0.65    0.80
    8    62000    5.23    5.23    0.19    0.19    0.49    0.60
    9    7500    5.23    5.23    0.19    0.19    0.50    0.70
    10    69000    5.23    5.23    0.19    0.19    0.44    0.60
    11    70000    3.73    3.73    0.27    0.27    0.64    0.80
    12    82000    4.19    4.19    0.24    0.24    0.57    0.75
    13    10000    4.44    4.44    0.23    0.23    0.50    0.65
    14    380000    5.23    5.23    0.19    0.19    0.31    0.45
    15    62000    4.19    4.19    0.24    0.24    0.50    0.70
        Hours Available
    Dobbie    32760.00
    Regular    196560.00
    Model
                                    Hrs.    Hrs.
    Fabric    Dobbie    Regular    Purchase Outside    Total    Cost            Used    Leftover
    1    0.00    0.00    16500.00    16500.00    $13,200        Dobbie Hrs.    32760    0
    2    0.00    0.00    52000.00    52000.00    $36,400        Reg. Hrs.    196560    0
    3    0.00    0.00    45000.00    45000.00    $38,250
    4    0.00    0.00    22000.00    22000.00    $15,400    
    5    0.00    0.00    76500.00    76500.00    $57,375
    6    0.00    0.00    110000.00    110000.00    $82,500
    7    0.00    0.00    122000.00    122000.00    $97,600
    8    0.00    0.00    62000.00    62000.00    $37,200
    9    15.00    0.00    7485.00    7500.00    $5,247
    10    0.00    0.00    69000.00    69000.00    $41,400
    11    0.00    0.00    70000.00    70000.00    $56,000
    12    0.00    0.00    82000.00    82000.00    $61,500
    13    0.00    0.00    10000.00    10000.00    $6,500
    14    0.00    0.00    380000.00    380000.00    $171,000
    15    0.00    90.00    61910.00    62000.00    $43,382
        15.00    90.00        Total    $762,954.30
Answer Report 5
    Microsoft Excel 14.0 Answer Report
    Worksheet: [Solution 85785.xlsx]11.19.
    Report Created: 04-06-2021 14:08:42
    Result: Solver found a solution. All Constraints and optimality conditions are satisfied.
    Solver Engine
        Engine: Simplex LP
        Solution Time: 0.016 Seconds.
        Iterations: 37 Subproblems: 0
    Solver Options
        Max Time Unlimited, Iterations Unlimited, Precision 0.000001
        Max Subproblems Unlimited, Max Integer Sols Unlimited, Integer Tolerance 1%, Assume NonNegative
    Objective Cell (Min)
        Cell    Name    Original Value    Final Value
        $F$48    Total Cost    ₹ 0.00    ₹ 762,954.30
    Variable Cells
        Cell    Name    Original Value    Final Value    Integer
        $B$33    Dobbie    0.00    0.00    Contin
        $C$33    Regular    0.00    0.00    Contin
        $D$33    Purchase...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here