10:58 АМ Тhu May 6 * 56% AA bartleby.com + M (108) - F G cascade yar... M (38,939) - s... y! Yahoo PM Trigonometri... Solve the bo... = bartleby Q Search for textbooks, step-by-step explanatio... Ask...


I don't why al=(2n-1)pi/2. Can you please explain it to me?Thank you


10:58 АМ Тhu May 6<br>* 56%<br>AA<br>bartleby.com<br>+<br>M (108) - F G cascade yar...<br>M (38,939) - s...<br>y!<br>Yahoo<br>PM Trigonometri...<br>Solve the bo...<br>= bartleby<br>Q Search for textbooks, step-by-step explanatio...<br>Ask an Expert<br>Math / Bundle: Differential Equations w... / Solve the boundary-value problem a 2 d 2 u d x 2 = d 2 u d t 2, 0 < x < L , t &...<br>| Solve the boundary-value problem a 2 d 2 u d x 2 = d 2 u dt2,0 < x < L , t > 0 ...<br>DIFFERENTIAL<br>EQUATIONS wth<br>ndary Value Proo<br>Bundle: Differential Equations wit...<br>9th Edition<br>Dennis G. Zill<br>Publisher: Cengage Learning<br>DENNIS G ZILL<br>Find 2<br>ISBN: 9781337604901<br>Chapter 12.7, Problem 6E<br>Textbook Problem<br>Solve the boundary-value problem<br>a?<br>dx2<br>0 < x < L, t> 0<br>||<br>dt2<br>ди<br>u (0, t) = 0, Eª = Fo, t> 0<br>dx [x=L<br>ди<br>и (х, 0) %3D 0, 0, 0 <х < L.<br>|f=0<br>The solution u(x, t) represents the longitudinal displacement of a vibrating elastic bar that is<br>anchored at its left end and is subjected to a constant force of magnitude F, at its right end. See<br>Figure 12.4.7 in Exercises 12.4. Eis a constant called the modulus of elasticity.<br>Expert Solution<br>To determine<br>The longitudinal displacement u (x, t) of a vibrating elastic bar such that<br>a² *u = &u_u (0,1) = 0, u (x. 0) = 0, E = Fo and L = 0.<br>dx Ix=L<br>dt Ix=L<br>X GET 10 FREE QUESTIONS<br>Answer to Problem 6E<br>

Extracted text: 10:58 АМ Тhu May 6 * 56% AA bartleby.com + M (108) - F G cascade yar... M (38,939) - s... y! Yahoo PM Trigonometri... Solve the bo... = bartleby Q Search for textbooks, step-by-step explanatio... Ask an Expert Math / Bundle: Differential Equations w... / Solve the boundary-value problem a 2 d 2 u d x 2 = d 2 u d t 2, 0 < x="">< l="" ,="" t="" &...="" |="" solve="" the="" boundary-value="" problem="" a="" 2="" d="" 2="" u="" d="" x="" 2="d" 2="" u="" dt2,0="">< x="">< l="" ,="" t=""> 0 ... DIFFERENTIAL EQUATIONS wth ndary Value Proo Bundle: Differential Equations wit... 9th Edition Dennis G. Zill Publisher: Cengage Learning DENNIS G ZILL Find 2 ISBN: 9781337604901 Chapter 12.7, Problem 6E Textbook Problem Solve the boundary-value problem a? dx2 0 < x="">< l,="" t=""> 0 || dt2 ди u (0, t) = 0, Eª = Fo, t> 0 dx [x=L ди и (х, 0) %3D 0, 0, 0 <х>< l.="" |f="0" the="" solution="" u(x,="" t)="" represents="" the="" longitudinal="" displacement="" of="" a="" vibrating="" elastic="" bar="" that="" is="" anchored="" at="" its="" left="" end="" and="" is="" subjected="" to="" a="" constant="" force="" of="" magnitude="" f,="" at="" its="" right="" end.="" see="" figure="" 12.4.7="" in="" exercises="" 12.4.="" eis="" a="" constant="" called="" the="" modulus="" of="" elasticity.="" expert="" solution="" to="" determine="" the="" longitudinal="" displacement="" u="" (x,="" t)="" of="" a="" vibrating="" elastic="" bar="" such="" that="" a²="" *u="&u_u" (0,1)="0," u="" (x.="" 0)="0," e="Fo" and="" l="0." dx="" ix="L" dt="" ix="L" x="" get="" 10="" free="" questions="" answer="" to="" problem="">
10:58 АМ Тhu May 6<br>* 56%<br>AA<br>bartleby.com<br>+<br>M (108) - F G cascade yar...<br>M (38,939) - s...<br>y!<br>Yahoo<br>PM Trigonometri...<br>Solve the bo...<br>= bartleby Q Search for textbooks, step-by-step explanatio...<br>Ask an Expert<br>Math / Bundle: Differential Equations w... / Solve the boundary-value problem a 2 d 2 u d x 2 = d 2 u d t 2 , 0 < x < L , t &...<br>: Solve the boundary-value problem a 2 d 2 u d x 2= d 2 u dt 2,0 < x < L ,t > 0 ...<br>X (x) = c8 sin (ax)<br>(11)<br>Differentiate the above equation with respect to x.<br>X' (x)<br>= ac6cos (ax)<br>Substitute L for x in the above equation.<br>X<br>X' (L) =<br>= ac8cos (aL)<br>ac8cos (aL) = 0<br>(x' (L) = 0)<br>(2n – 1) 5<br>(2n – 1)<br>aL<br>a =<br>Therefore, the Eigen values are as follows<br>An = an<br>= ((2n – 1) )<br>Substitute the value of a in equation (11).<br>X (x) = cg sin ((2n – 1)<br>TX<br>2L<br>The above equation represents the Eigen functions where. n = 1, 2, 3, ....<br>Substitute a? for 1 in equation (6).<br>T

Extracted text: 10:58 АМ Тhu May 6 * 56% AA bartleby.com + M (108) - F G cascade yar... M (38,939) - s... y! Yahoo PM Trigonometri... Solve the bo... = bartleby Q Search for textbooks, step-by-step explanatio... Ask an Expert Math / Bundle: Differential Equations w... / Solve the boundary-value problem a 2 d 2 u d x 2 = d 2 u d t 2 , 0 < x="">< l="" ,="" t="" &...="" :="" solve="" the="" boundary-value="" problem="" a="" 2="" d="" 2="" u="" d="" x="" 2="d" 2="" u="" dt="" 2,0="">< x="">< l="" ,t=""> 0 ... X (x) = c8 sin (ax) (11) Differentiate the above equation with respect to x. X' (x) = ac6cos (ax) Substitute L for x in the above equation. X X' (L) = = ac8cos (aL) ac8cos (aL) = 0 (x' (L) = 0) (2n – 1) 5 (2n – 1) aL a = Therefore, the Eigen values are as follows An = an = ((2n – 1) ) Substitute the value of a in equation (11). X (x) = cg sin ((2n – 1) TX 2L The above equation represents the Eigen functions where. n = 1, 2, 3, .... Substitute a? for 1 in equation (6). T" + a²a?T = 0 The general solution of the above equation is as follows: T (t) = c9cos (aat) + c10sin (aat) (12) Differentiate the above equation with respect to t. T' (t) = -aac9 sin (aat) + aac10 cos (aat) Substitute 0 for t in the above equation. X GET 10 FREE QUESTIONS ) (T' (0) = 0)
Jun 04, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here