100 100 18. k. 19. E k. k=3 k= 1 20 100 20. 2 (7k + 1). k = 1 21. Σ2 k 1 20 6. 22. Σ 23. (4k3 – 2k + 1). k=4 k = 1 6. 30 do not 24. E (k - k°). 25.) k(k - 2)(k + 2). k = 1 k=1 In Exercises 26-30,...

#29 please
100<br>100<br>18. k.<br>19. E k.<br>k=3<br>k= 1<br>20<br>100<br>20. 2 (7k + 1).<br>k = 1<br>21. Σ2<br>k 1<br>20<br>6.<br>22. Σ<br>23. (4k3 – 2k + 1).<br>k=4<br>k = 1<br>6.<br>30<br>do not<br>24. E (k - k°).<br>25.) k(k - 2)(k + 2).<br>k = 1<br>k=1<br>In Exercises 26-30, express the sum in closed forrn.<br>n-1<br>26. (a) 2 (4 k – 3)<br>(b) k?.<br>k=1<br>k=1<br>2<br>3k<br>27. E<br>28.<br>k=1<br>ban en<br>30.<br>n-1<br>2k<br>29<br>in<br>k=1<br>k=1<br>- 1<br>In Exercises 31-35, the limit of a function of n is given.<br>4)h.h Express the function of n in closed form, then find the<br>limit. [Note: Although n assumes only integer values, the<br>limits can be calculated using the same techniques that we<br>have been using for functions of a real-valued variable x.<br>Functions of integer-valued variables will be studied in more<br>detail later.]<br>1+2+3+ +n<br>lim<br>31.<br>n°<br>n→+ o<br>1/5<br>

Extracted text: 100 100 18. k. 19. E k. k=3 k= 1 20 100 20. 2 (7k + 1). k = 1 21. Σ2 k 1 20 6. 22. Σ 23. (4k3 – 2k + 1). k=4 k = 1 6. 30 do not 24. E (k - k°). 25.) k(k - 2)(k + 2). k = 1 k=1 In Exercises 26-30, express the sum in closed forrn. n-1 26. (a) 2 (4 k – 3) (b) k?. k=1 k=1 2 3k 27. E 28. k=1 ban en 30. n-1 2k 29 in k=1 k=1 - 1 In Exercises 31-35, the limit of a function of n is given. 4)h.h Express the function of n in closed form, then find the limit. [Note: Although n assumes only integer values, the limits can be calculated using the same techniques that we have been using for functions of a real-valued variable x. Functions of integer-valued variables will be studied in more detail later.] 1+2+3+ +n lim 31. n° n→+ o 1/5

Jun 05, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here