1. Write an M file spline.m such that spline(m(k),m(k+1),p(k), q(k),x0(k), x0(k+1) , x ) computesSk(x) for x in the interval [x0(k) ,x0(k+1)]2. Write a matlab program in an M filespline_nat.mthat...

1 answer below »


1. Write an M file spline.m such that spline(m(k),m(k+1),p(k), q(k),x0(k), x0(k+1) , x ) computesSk(x) for x in the interval [x0(k) ,x0(k+1)]2. Write a matlab program in an M filespline_nat.mthat computes thenatural spline approximation of the set of data points (x0(k) , y0(k) ),k=0,1,..n. asspline_nat(x0,y0)that(a) Accepts x0 and y0 data points.(b) defines a(i), i=1,2,..,n, b(i), i=1,2,..n-1, c(i),i=1,2,..n-1 and theright hand side u(k), k=0,1,2,..n-2.(c) calls gesolve from question I to solve the resulting system. Com-pute p(i), i=0,...,n-1, and q(i), i=0,..,n-1.(d) calls spline.m to evaluateSk(x) and plot the spline approximation.On the same plot show the data points x0 and y0 asplot(x0,y0,’*’).3. Test your program on an example treated in class to make sure that itis working properly. x = [ -2,-1,0,1,2], y = [ 2,1,0,1,2], m =[ 0 , -6/7 ,24/7, -6/7, 0], p = [ 2,8/7, -4/7, 8/7], q =[ 8/7, -4/7 , 8/7, 2 ].4. Run the matlab smile.m program that reads each of the attached datafiles and callsspline_natseveral times to plot its natural spline ap-proximation. Plot the spline approximation of all data files on the samefigure to have a smiling face. Data files and the m-file ’smile.m’ will beposted in Canvas under Files.Problem III1. Write an M file dspline.m such that dspline(m(k),m(k+1),p(k), q(k),x0(k), x0(k+1) , x ) computes derivative ofSk(x) for x in the interval[x0(k) , x0(k+1)].22. Modify yourspline_nat.mtospline_clam.msuch thatspline_clam(x0,y0,fp0,fp1,func,funcprime)(a) accepts x0, y0 and the first derivatives of S(x), S’(x0(0)) = fp0,and S’(x0(n)) = fp1. func is the function to be interpolated,funcprime is the derivative of func.(b) defines a ,b,c and f for clamped spline and use gesolve to solve form(i), i=1,2,...,n-1. Compute m(0) and m(n).(c) Computes p and q(d) calls spline.m to plot the clamped spline and the exact functionon the same figure.(e) calls dspline.m to plot the derivative S’(x) and the derivative onthe function.(f) plots the true error, e(x) = S(x) - f(x), as a function of x. On aseparate figure plot the error interval by interval to include thepointsx0(i), e(x0(i)) in your plot and mark them by a *.3. Test your program using a cubic functionf(x) =x3with x0 =[ -12 5 8]. You should find S(x) = f(x) and the error should be zero toround-off error.4. Run you program to approximatef(x) =x∗exp(x) withx0i=i∗0.2,i =0,1,2,..10.a-Hand in a printed copy of you programs, your plots and results withdiscussions.b-Upload your programs to CanvasLet the system Ax = f have n equations and n unknowns with nonzero entriesA(i,i) = a(i) , i=1,2,...,nA(i+1,i) = b(i), i=1,2,...n-1A(i,i+1) = c(i), i=1,2,..,n-1All other entries of the matrix A are zero.The following algorithm solves the system Ax = f using Gaussian eliminationfor tridiagonal systems.
Answered Same DayApr 06, 2021

Answer To: 1. Write an M file spline.m such that spline(m(k),m(k+1),p(k), q(k),x0(k), x0(k+1) , x )...

Abr Writing answered on Apr 09 2021
139 Votes
math4446/dspline.m
function Skp = dspline(mk,mkp1,pk,qk,xk,xkp1,x)
hk = xkp1-xk;
Skp = -mk./(2.*hk).*(x-xkp1).^2 + ...
mkp1./(2.*hk).*(x-xk).^2 - pk + qk;
end
math4446/gesolve.m
function x = gesolve(a,b,c,f)
d(1) = a(1);
z(1) = f(1);
n = length(f);
for i=2:n
d(i) = a(i) - b(i-1)*c(i-1)/d(i-1);
z(i) = f(i) - b(i-1)*z(i-1)/d(i-1);
end
%
%solve Ux =z or Backward substitution step
%
x(n) = z(n)/d(n);
for i=n-1:-1:1
x(i) = (z(i) - c(i)*x(i+1))/d(i);
end
x = x';
end
math4446/headbot.m
headb=[
-1,0
-0.95,-0.31225
-0.9,-0.43589
-0.85,-0.52678
-0.8,-0.6
-0.75,-0.66144
-0.7,-0.71414
-0.65,-0.75993
-0.6,-0.8
-0.55,-0.83516
-0.5,-0.86603
-0.45,-0.89303
-0.4,-0.91652
-0.35,-0.93675
-0.3,-0.95394
-0.25,-0.96825
-0.2,-0.9798
-0.15,-0.98869
-0.1,-0.99499
-0.05,-0.99875
0,-1
0.05,-0.99875
0.1,-0.99499
0.15,-0.98869
0.2,-0.9798
0.25,-0.96825
0.3,-0.95394
0.35,-0.93675
0.4,-0.91652
0.45,-0.89303
0.5,-0.86603
0.55,-0.83516
0.6,-0.8
0.65,-0.75993
0.7,-0.71414
0.75,-0.66144
0.8,-0.6
0.85,-0.52678
0.9,-0.43589
0.95,-0.31225
1,0 ];
math4446/headtop.m
headt=[
-1,0
-0.95,0.31225
-0.9,0.43589
-0.85,0.52678
-0.8,0.6
-0.75,0.66144
-0.7,0.71414
-0.65,0.75993
-0.6,0.8
-0.55,0.83516
-0.5,0.86603
-0.45,0.89303
-0.4,0.91652
-0.35,0.93675
-0.3,0.95394
-0.25,0.96825
-0.2,0.9798
-0.15,0.98869
-0.1,0.99499
-0.05,0.99875
0,1
0.05,0.99875
0.1,0.99499
0.15,0.98869
0.2,0.9798
0.25,0.96825
0.3,0.95394
0.35,0.93675
0.4,0.91652
0.45,0.89303
0.5,0.86603
0.55,0.83516
0.6,0.8
0.65,0.75993
0.7,0.71414
0.75,0.66144
0.8,0.6
0.85,0.52678
0.9,0.43589
0.95,0.31225
1,0];
math4446/leyebot.m
leyeb=[
-0.7,0.5
-0.69,0.46878
-0.68,0.45641
-0.67,0.44732
-0.66,0.44
-0.65,0.43386
-0.64,0.42859
-0.63,0.42401
-0.62,0.42
-0.61,0.41648
-0.6,0.4134
-0.59,0.4107
-0.58,0.40835
-0.57,0.40633
-0.56,0.40461
-0.55,0.40318
-0.54,0.40202
-0.53,0.40113
-0.52,0.4005
-0.51,0.40013
-0.5,0.4
-0.49,0.40013
-0.48,0.4005
-0.47,0.40113
-0.46,0.40202
-0.45,0.40318
-0.44,0.40461
-0.43,0.40633
-0.42,0.40835
-0.41,0.4107
-0.4,0.4134
-0.39,0.41648
-0.38,0.42
-0.37,0.42401
-0.36,0.42859
-0.35,0.43386
-0.34,0.44
-0.33,0.44732
-0.32,0.45641
-0.31,0.46878
-0.3,0.5];
math4446/leyetop.m
leyet=[
-0.7,0.5
-0.69,0.53122
-0.68,0.54359
-0.67,0.55268
-0.66,0.56
-0.65,0.56614
-0.64,0.57141
-0.63,0.57599
-0.62,0.58
-0.61,0.58352
-0.6,0.5866
-0.59,0.5893
-0.58,0.59165
-0.57,0.59367
-0.56,0.59539
-0.55,0.59682
-0.54,0.59798
-0.53,0.59887
-0.52,0.5995
-0.51,0.59987
-0.5,0.6
-0.49,0.59987
-0.48,0.5995
-0.47,0.59887
-0.46,0.59798
-0.45,0.59682
-0.44,0.59539
-0.43,0.59367
-0.42,0.59165
-0.41,0.5893
-0.4,0.5866
-0.39,0.58352
-0.38,0.58
-0.37,0.57599
-0.36,0.57141
-0.35,0.56614
-0.34,0.56
-0.33,0.55268
-0.32,0.54359
-0.31,0.53122
-0.3,0.5 ];
math4446/mouth.m
mouthd=[
-0.5,-0.2
-0.475,-0.27806
-0.45,-0.30897
-0.425,-0.3317
-0.4,-0.35
-0.375,-0.36536
-0.35,-0.37854
-0.325,-0.38998
-0.3,-0.4
-0.275,-0.40879
-0.25,-0.41651
-0.225,-0.42326
-0.2,-0.42913
-0.175,-0.43419
-0.15,-0.43848
-0.125,-0.44206
-0.1,-0.44495
-0.075,-0.44717
-0.05,-0.44875
-0.025,-0.44969
0,-0.45
0.025,-0.44969
0.05,-0.44875
0.075,-0.44717
0.1,-0.44495
0.125,-0.44206
0.15,-0.43848
0.175,-0.43419
0.2,-0.42913
0.225,-0.42326
0.25,-0.41651
0.275,-0.40879
0.3,-0.4
0.325,-0.38998
0.35,-0.37854
0.375,-0.36536
0.4,-0.35
0.425,-0.3317
0.45,-0.30897
0.475,-0.27806
0.5,-0.2];
math4446/nose.m
nosed=[
-0.2,0.44
-0.19,0.3776
-0.18,0.3184
-0.17,0.2624
-0.16,0.2096
-0.15,0.16
-0.14,0.1136
-0.13,0.0704
-0.12,0.0304
-0.11,-0.0064
-0.1,-0.04
-0.09,-0.0704
-0.08,-0.0976
-0.07,-0.1216
-0.06,-0.1424
-0.05,-0.16
-0.04,-0.1744
-0.03,-0.1856
-0.02,-0.1936
-0.01,-0.1984
0,-0.2
0.01,-0.1984
0.02,-0.1936
0.03,-0.1856
0.04,-0.1744
0.05,-0.16
0.06,-0.1424
0.07,-0.1216
0.08,-0.0976
0.09,-0.0704
0.1,-0.04
0.11,-0.0064
0.12,0.0304
0.13,0.0704
0.14,0.1136
0.15,0.16
0.16,0.2096
0.17,0.2624
0.18,0.3184
0.19,0.3776
0.2,0.44];
math4446/project2.docx
Matt 4446 Project 2
Clearing the workspace
clear;
close;
clc;
Seleting the format for results
format long e
Problem I
Testing the program
% Defining the given parameters
A = [
5 2 0 0
4 13 -4 0
0 7 15 6
0 0 12 -16
];
f = [
1
2
3
4
];
Getting the solution using MATLAB command
x = A\f
Now getting the solution using the Gaussian elimination and forward algorithm defined under gesolve
n = length(f);
a = zeros(n, 1);
b = zeros(n-1, 1);
c = zeros(n-1, 1);
for i=1:n
a(i) = A(i, i);
if i ~= n
b(i) = A(i+1, i);
c(i) = A(i, i+1);
end
end
x = gesolve(a, b, c, f)
From the results above, we can see that the results are exactly the same from the algorithm to the results from MATLAB command.
Problem II
Testing the program
% Defining the given variables
x = [ -2,-1,0,1,2];
y = [ 2,1,0,1,2];
m =[ 0 , -6/7 , 24/7, -6/7, 0];
p = [ 2,8/7, -4/7, 8/7];
q =[ 8/7, -4/7 , 8/7, 2 ];
figure;
spline_nat(x, y)
Running the MATLAB smile program to plot the natural spline approximation of the smiling face.
figure;
smile
Problem III
Testing the code for a cubic function
x0 = [-1 2 5 8];
n = length(x0);
func = @(x) x.^3;
funcprime = @(x) 3*(x.^2);
y0 = func(x0);
fp = funcprime(x0);
fp0 = fp(1);
fp1 = fp(n);
spline_clam(x0,y0,fp0,fp1,func,funcprime)
From the plot above, as expected we can see that the error is almost equal to zero.
Now testing the code for
i = 0:10;
x0 = i*0.2;
n = length(x0);
func = @(x) x.*exp(x);
funcprime = @(x) exp(x) + x.*exp(x);
y0 = func(x0);
fp = funcprime(x0);
fp0 = fp(1);
fp1 = fp(n);
spline_clam(x0,y0,fp0,fp1,func,funcprime)
Yes, the average error tends to be about zero, which is very small, but the round-off error is not exactly equal to 0. This is still quite a good approximation, although it is not as reliable as in the cubic function.
Appendix
function x = gesolve(a,b,c,f)
d(1) = a(1);
z(1) = f(1);
n = length(f);
for i=2:n
d(i) = a(i) - b(i-1)*c(i-1)/d(i-1);
z(i) = f(i) - b(i-1)*z(i-1)/d(i-1);
end
%
%solve Ux =z or Backward substitution step
%
x(n) = z(n)/d(n);
for i=n-1:-1:1
x(i) = (z(i) - c(i)*x(i+1))/d(i);
end
x = x';
end
function Sk = spline(mk,mkp1,pk,qk,xk,xkp1,x)
hk = xkp1 - xk;
Sk = - mk./(6.*hk).*(x - xkp1).^3 + ...
mkp1./(6.*hk).*(x - xk).^3 + ...
pk.*(xkp1 - x) + ...
qk.*(x - xk);
end
function spline_nat(x0,y0)
n = length(x0);
x0=reshape(x0,1,n);
y0=reshape(y0,1,n);
h = x0(2:n) - x0(1:(n-1));
d = (y0(2:n) - y0(1:(n-1)))./h;
a = 2*(h(1:(n-2)) + h(2:(n-1)));
b = h(2:(n-2));
u = 6*(d(2:n-1) - d(1:n-2));
m = gesolve(a,b,b,u);
m = [0 m' 0];
p = y0(1:(n-1))./h - m(1:(n-1)).*h/6;
q = y0(2:n)./h - m(2:n).*h/6;

hold on
plot(x0, y0, '*');
for i = 1:(n-1)
x=linspace(x0(i),x0(i+1),1000);
Sk = spline(m(i),m(i+1),p(i),q(i),x0(i),x0(i+1),x);
plot(x,Sk,'linewidth',1.5);
end
xlabel('x');
ylabel('f(x)');
title('Natural spline for f(x)');
end
function Skp = dspline(mk,mkp1,pk,qk,xk,xkp1,x)
hk = xkp1-xk;
Skp = -mk./(2.*hk).*(x-xkp1).^2 + ...
mkp1./(2.*hk).*(x-xk).^2 - pk + qk;
end
function spline_clam(x0,y0,fp0,fp1,func,funcprime)
n = length(x0);
x0=reshape(x0,1,n);
y0=reshape(y0,1,n);
h = x0(2:n) - x0(1:(n-1));
d = (y0(2:n) - y0(1:(n-1)))./h;
a = 2*(h(1:(n-2)) + h(2:(n-1)));
a(1) = 3*h(1)/2 + 2*h(2);
a(n-2) = 3/2*h(n-1) + 2*h(n-2);
b = h(2:(n-2));
f=6*(d(2:n-1) - d(1:n-2));
f(1) = f(1) - 3*(d(1) - fp0);
f(n-2) = f(n-2) - 3*(fp1 - d(end));
m = gesolve(a,b,b,f);
m0 = 3*(d(1) - fp0)/h(1) - m(1)/2;
mn = 3*(fp1 - d(end))/h(end) - m(end)/2;
m =[m0 m' mn];
p = y0(1:(n-1))./h - m(1:(n-1)).*h/6;
q = y0(2:n)./h - m(2:n).*h/6;
figure(1);
clf
hold on
for i = 1:(n-1)
x=linspace(x0(i),x0(i+1),100);
Sk = spline(m(i),m(i+1),p(i),q(i),x0(i),x0(i+1),x);
F = func(x);
plot(x,Sk,'linewidth',1.5)
plot(x,F,'linewidth',1.5)
end
xlabel('x')
ylabel('f(x)')
title('Clamped cubic spline and f(x)')
pause
figure(2);
clf
clear F
hold on
for i = 1:(n-1)
x=linspace(x0(i),x0(i+1),100);
Skp = dspline(m(i),m(i+1),p(i),q(i),x0(i),x0(i+1),x);
F = funcprime(x);
plot(x,Skp,'linewidth',1.5)
plot(x,F,'linewidth',1.5)
end
xlabel('x')
ylabel('g(x)')
title('Derivative of clamped cubic spline, g(x)')
pause;
figure(3);
clf;
clear F;
hold on;
for i = 1:(n-1)
x=linspace(x0(i),x0(i+1),100);
Sk = spline(m(i),m(i+1),p(i),q(i),x0(i),x0(i+1),x);
F = func(x);
e = Sk - F;
plot(x,e,'linewidth',1.5)
end
xlabel('x')
ylabel('f(x)')
title('Error of the clamped cubic spline for f(x)')
end
math4446/project2.mlx
[Content_Types].xml

_rels/.rels

mathml/eqn1.mml
A\f
mathml/eqn2.mml
f(x)=x×exp(x)
matlab/_rels/document.xml.rels

matlab/document.xml
Matt 4446 Project 2 Clearing the workspace clear;
close;
clc; Seleting the format for results format long e Problem I Testing the program % Defining the given parameters
A = [
5 2 0 0
4 13 -4 0
0 7 15 6
0 0 12 -16
];
f = [
1
2
3
4
]; Getting the solution using MATLAB command A\backslash f x = A\f Now getting the solution using the Gaussian elimination and forward algorithm defined under gesolve n = length(f);
a = zeros(n, 1);
b = zeros(n-1, 1);
c = zeros(n-1, 1);
for i=1:n
a(i) = A(i, i);
if i ~= n
b(i) = A(i+1, i);
c(i) = A(i, i+1);
end
end
x = gesolve(a, b, c, f) From the results above, we can see that the results are exactly the same from the algorithm to the results from MATLAB command. Problem II Testing the program % Defining the given variables
x = [ -2,-1,0,1,2];
y = [ 2,1,0,1,2];
m =[ 0 , -6/7 , 24/7, -6/7, 0];
p = [ 2,8/7, -4/7, 8/7];
q =[ 8/7, -4/7 , 8/7, 2 ];
figure;
spline_nat(x, y) Running the MATLAB smile program to plot the natural spline approximation of the smiling face. figure;
smile Problem III Testing the code for a cubic function x0 = [-1 2 5 8];
n = length(x0);
func = @(x) x.^3;
funcprime = @(x) 3*(x.^2);
y0 = func(x0);
fp = funcprime(x0);
fp0 = fp(1);
fp1 = fp(n);
spline_clam(x0,y0,fp0,fp1,func,funcprime) From the plot above, as expected we can see that the error is almost equal to zero. Now testing the code for f\left(x\right)=x\times \mathrm{exp}\left(x\right) i = 0:10;
x0 = i*0.2;
n = length(x0);
func = @(x) x.*exp(x);
funcprime = @(x) exp(x) + x.*exp(x);
y0 = func(x0);
fp = funcprime(x0);
fp0 = fp(1);
fp1 = fp(n);
spline_clam(x0,y0,fp0,fp1,func,funcprime) Yes, the average error tends to be about zero, which is very small, but the round-off error is not exactly equal to 0. This is still quite a good approximation, although it is not as reliable as in the cubic function. Appendix function x = gesolve(a,b,c,f)
d(1) = a(1);
z(1) = f(1);
n = length(f);
for i=2:n
d(i) = a(i) - b(i-1)*c(i-1)/d(i-1);
z(i) = f(i) - b(i-1)*z(i-1)/d(i-1);
end
%
%solve Ux =z or Backward substitution step
%
x(n) = z(n)/d(n);
for i=n-1:-1:1
x(i) = (z(i) - c(i)*x(i+1))/d(i);
end
x = x';
end
function Sk = spline(mk,mkp1,pk,qk,xk,xkp1,x)
hk = xkp1 - xk;
Sk = - mk./(6.*hk).*(x - xkp1).^3 + ...
mkp1./(6.*hk).*(x - xk).^3 + ...
pk.*(xkp1 - x) + ...
qk.*(x - xk);
end
function spline_nat(x0,y0)
n = length(x0);
x0=reshape(x0,1,n);
y0=reshape(y0,1,n);
h = x0(2:n) - x0(1:(n-1));
d = (y0(2:n) - y0(1:(n-1)))./h;
a = 2*(h(1:(n-2)) + h(2:(n-1)));
b = h(2:(n-2));
u = 6*(d(2:n-1) - d(1:n-2));
m = gesolve(a,b,b,u);
m = [0 m' 0];
p = y0(1:(n-1))./h - m(1:(n-1)).*h/6;
q = y0(2:n)./h - m(2:n).*h/6;
hold on
plot(x0, y0, '*');
for i = 1:(n-1)
x=linspace(x0(i),x0(i+1),1000);
Sk = spline(m(i),m(i+1),p(i),q(i),x0(i),x0(i+1),x);
plot(x,Sk,'linewidth',1.5);
end
xlabel('x');
ylabel('f(x)');
title('Natural spline for f(x)');
end
function Skp = dspline(mk,mkp1,pk,qk,xk,xkp1,x)
hk = xkp1-xk;
Skp = -mk./(2.*hk).*(x-xkp1).^2 + ...
mkp1./(2.*hk).*(x-xk).^2 - pk + qk;
end
function spline_clam(x0,y0,fp0,fp1,func,funcprime)
n = length(x0);
x0=reshape(x0,1,n);
y0=reshape(y0,1,n);
h = x0(2:n) - x0(1:(n-1));
d = (y0(2:n) - y0(1:(n-1)))./h;
a = 2*(h(1:(n-2)) + h(2:(n-1)));
a(1) = 3*h(1)/2 + 2*h(2);
a(n-2) = 3/2*h(n-1) + 2*h(n-2);
b = h(2:(n-2));
f=6*(d(2:n-1) - d(1:n-2));
f(1) = f(1) - 3*(d(1) - fp0);
f(n-2) = f(n-2) - 3*(fp1 - d(end));
m = gesolve(a,b,b,f);
m0 = 3*(d(1) - fp0)/h(1) - m(1)/2;
mn = 3*(fp1 - d(end))/h(end) - m(end)/2;
m =[m0 m' mn];
p = y0(1:(n-1))./h - m(1:(n-1)).*h/6;
q = y0(2:n)./h - m(2:n).*h/6;
figure(1);
clf
hold on
for i = 1:(n-1)
x=linspace(x0(i),x0(i+1),100);
Sk = spline(m(i),m(i+1),p(i),q(i),x0(i),x0(i+1),x);
F = func(x);
plot(x,Sk,'linewidth',1.5)
plot(x,F,'linewidth',1.5)
end
xlabel('x')
ylabel('f(x)')
title('Clamped cubic spline and f(x)')
pause
figure(2);
clf
clear F
hold on
for i = 1:(n-1)
x=linspace(x0(i),x0(i+1),100);
Skp = dspline(m(i),m(i+1),p(i),q(i),x0(i),x0(i+1),x);
F = funcprime(x);
plot(x,Skp,'linewidth',1.5)
plot(x,F,'linewidth',1.5)
end
xlabel('x')
ylabel('g(x)')
title('Derivative of clamped cubic spline, g(x)')
pause;
figure(3);
clf;
clear F;
hold on;
for i = 1:(n-1)
x=linspace(x0(i),x0(i+1),100);
Sk = spline(m(i),m(i+1),p(i),q(i),x0(i),x0(i+1),x);
F = func(x);
e = Sk - F;
plot(x,e,'linewidth',1.5)
end
xlabel('x')
ylabel('f(x)')
title('Error of the clamped cubic spline for f(x)')
end
matlab/output.xml
manual document ready 0.4 matrix x 4×1 4 1 double 1.338393927287255e-01
1.654015181781862e-01
1.713943268078306e-01
-1.214542548941270e-01
double double [[{"value":"{\"value\":\"1.338393927287255e-01\"}"},{"value":"{\"value\":\"1.654015181781862e-01\"}"},{"value":"{\"value\":\"1.713943268078306e-01\"}"},{"value":"{\"value\":\"-1.214542548941270e-01\"}"}]] 19 matrix x 4×1 4 1 double 1.338393927287255e-01
1.654015181781862e-01
1.713943268078306e-01
-1.214542548941270e-01
double double [[{"value":"{\"value\":\"1.338393927287255e-01\"}"},{"value":"{\"value\":\"1.654015181781862e-01\"}"},{"value":"{\"value\":\"1.713943268078306e-01\"}"},{"value":"{\"value\":\"-1.214542548941270e-01\"}"}]] 32 figure cba6917a-d32d-4f77-852e-b33351d568dd  560 420 18 19 18 39 40 figure 4c3cdf34-276d-426f-8981-d3251db459f3...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here