1. Let f(r) 3, for each positive integer n, consider the regular partition 0 o x2


1. Let f(r) 3, for each positive integer n, consider the regular partition<br>0 o<br>x2 < - *. < In-1 < In = 1<br>of 0, 1] into n many equal-sized subintervals. Denote the corresponding Right-hand<br>Riemann sum by<br>Σία) Δ<br>i=1<br>(a) For each n, Rn<br>rdx, but what is the smallest value of n for which Rn is within<br>d? (Hint: find a formula for Rn in terms of n)<br>0.1 of the exact value of<br>(b) If a different choice for rin ri-1, X], for i = 1,2, ... , n is chosen to construct the<br>Riemann sum<br>Σ)Δn<br>i=1<br>Idr, for a smaller value<br>can the resulting sum be within 0.1 of the exact value of<br>of n than in part (a)? If so, give an example. If not, explain why<br>

Extracted text: 1. Let f(r) 3, for each positive integer n, consider the regular partition 0 o x2 < -="" *.="">< in-1="">< in="1" of="" 0,="" 1]="" into="" n="" many="" equal-sized="" subintervals.="" denote="" the="" corresponding="" right-hand="" riemann="" sum="" by="" σία)="" δ="" i="1" (a)="" for="" each="" n,="" rn="" rdx,="" but="" what="" is="" the="" smallest="" value="" of="" n="" for="" which="" rn="" is="" within="" d?="" (hint:="" find="" a="" formula="" for="" rn="" in="" terms="" of="" n)="" 0.1="" of="" the="" exact="" value="" of="" (b)="" if="" a="" different="" choice="" for="" rin="" ri-1,="" x],="" for="" i="1,2," ...="" ,="" n="" is="" chosen="" to="" construct="" the="" riemann="" sum="" σ)δn="" i="1" idr,="" for="" a="" smaller="" value="" can="" the="" resulting="" sum="" be="" within="" 0.1="" of="" the="" exact="" value="" of="" of="" n="" than="" in="" part="" (a)?="" if="" so,="" give="" an="" example.="" if="" not,="" explain="">

Jun 03, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here