1. Let F [ry,-y², 2] be a force field and C be the curve given by the parametrization r(t) = [t, 1/t, e-), 1


1. Let F [ry,-y², 2] be a force field and C be the curve given by the<br>parametrization r(t) = [t, 1/t, e-), 1 <t< 2. Compute the work done by<br>F in a displacement along the curve C.<br>2. Compute the value of the line integral (2rydx + (1+ 32?y?)dy).<br>3. Compute the value of the double integral ffRe dxdy, where R is the<br>triangular region bounded by the lines r 0, y = 0, and y = 2r.<br>4. Compute the value of the double integral fRe-ydxdy, where R is<br>the region bounded by the lines y = r, y = 2x, and the curves y = 1/a and<br>y = 3/r.<br>5. Let C be the unit circle a? + y? = 1 with the counterclockwise ori-<br>entation and F (-y

Extracted text: 1. Let F [ry,-y², 2] be a force field and C be the curve given by the parametrization r(t) = [t, 1/t, e-), 1 <>< 2.="" compute="" the="" work="" done="" by="" f="" in="" a="" displacement="" along="" the="" curve="" c.="" 2.="" compute="" the="" value="" of="" the="" line="" integral="" (2rydx="" +="" (1+="" 32?y?)dy).="" 3.="" compute="" the="" value="" of="" the="" double="" integral="" ffre="" dxdy,="" where="" r="" is="" the="" triangular="" region="" bounded="" by="" the="" lines="" r="" 0,="" y="0," and="" y="2r." 4.="" compute="" the="" value="" of="" the="" double="" integral="" fre-ydxdy,="" where="" r="" is="" the="" region="" bounded="" by="" the="" lines="" y="r," y="2x," and="" the="" curves="" y="1/a" and="" y="3/r." 5.="" let="" c="" be="" the="" unit="" circle="" a?="" +="" y?="1" with="" the="" counterclockwise="" ori-="" entation="" and="" f="" (-y",="" a*).="" compute="" the="" line="" integral="" fe="" f="" dr="" using="" the="" theorem="" of="" green.="" 6.="" compute="" the="" area="" of="" the="" surface="" s="" given="" by="" the="" parametrization="" r(u,="" v)="[u," v,="" u²="" +="" v²]="" and="" defined="" over="" the="" unit="" disc="" r="{(u," v)="" :="" u²+v²="">< 1}.="" 7.="" find="" the="" equation="" of="" the="" tangent="" plane="" to="" the="" surface="" s:="" r(u,="" v)="[-uv," v,="" u]="" at="" the="" point="" a(-1,="" 1,="" 1).="" 8.="" compute="" the="" surface="" integral="" ff,="" f="" nda,="" where="" f="" [a,="" y,="" 2]="" and="" s="" is="" given="" by="" the="" parametrization="" r(u,="" v)="[u," v,="" 1="" –="" u?="" -="" v*]="" over="" the="" region="" r="{(u," v):="" u2="" +="" v²=""><>

Jun 04, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here