Answer To: 1 Introduction Modern fitness tracking apps such as Strava and Garmin Connect make extensive use of...
Sandeep Kumar answered on Apr 18 2021
fit.ipynb
{
"cells": [
{
"cell_type": "code",
"execution_count": 117,
"id": "989a4fbe",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from shapely.geometry import Point\n",
"import geopandas as gpd\n",
"from geopandas import GeoDataFrame\n",
"import datetime\n",
"import math"
]
},
{
"cell_type": "code",
"execution_count": 118,
"id": "236954c8",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[-32.8962377 , 151.66344395, 28.6 ],\n",
" [-32.89623435, 151.66344864, 29.8 ],\n",
" [-32.89622127, 151.66344102, 30.2 ],\n",
" ...,\n",
" [-32.89626268, 151.66341922, 28. ],\n",
" [-32.89626268, 151.66341721, 28. ],\n",
" [-32.89626318, 151.66341771, 28.2 ]])"
]
},
"execution_count": 118,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Task 1 and 2\n",
"df = pd.read_csv('track.csv')\n",
"num = df.drop(['time'],axis=1).values\n",
"num_co = df.drop(['ele'],axis=1).values\n",
"num"
]
},
{
"cell_type": "code",
"execution_count": 119,
"id": "43c4d8e9",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/patra/.local/lib/python3.8/site-packages/geopandas/plotting.py:678: UserWarning: The GeoDataFrame you are attempting to plot is empty. Nothing has been displayed.\n",
" warnings.warn(\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAADRCAYAAAB1qz6aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAuV0lEQVR4nO3dfZRU9Z3n8fcXlUejcZA0ArZGxSjpRgPEsCaudBzzwDk7JHD2SMYxQTCZDGZ2BiaQzcaFgCcbRxKYPTuaHWdo3cwmMdl0ZzInS2KMdu+sIaiAChVRfAQFKUl0h6iIQn/3j3srXTR1bz3duvXQn9c599D1uw/1q7p017d+D9+fuTsiIiIi0vhG1LsCIiIiIlIaBW4iIiIiTUKBm4iIiEiTUOAmIiIi0iQUuImIiIg0CQVuIiIiIk3i5HpXIA1nnnmmn3vuufWuhoiIiEhR27Zt+427Tyi0b1gEbueeey5bt26tdzVEREREijKzPVH71FUqIiIi0iQUuImIiIg0iaoCNzO72cx2mNmjZvZzM5sUll8blu80s81mdknE+VeZ2fbw/AfM7IKwfENY9qiZ7Taz/5d3zmfM7Klw+0w19RcRERFpJlbNWqVmdpq7Hwp//g/ANHf/vJldDuxy91fN7OPAV939AwXO3w3Mc/ddZrYUuMzdFw055s+B97n7YjP7A2ArMAtwYBsw091fjavnrFmzXGPcREREpBmY2TZ3n1VoX1UtbrmgLTSOIJjC3TfnBVNbgClRlwBOC38+Hdhf4JhPAd8Lf/4ocK+7vxJe/17gY5W/Amk5mQyMHQtmx2/9/fWumYiISNWqnlVqZl8DPg38K9BV4JAlwE8jTr8B2GRmh4FDwOwh1z4HeDdwf1g0GXgh75AXwzIR6O6GJUsK7+vqggMHoK0t3TqJiIgkqGiLm5n9wswyBbZ5AO7+FXc/G/gO8IUh53YRBG5firj8MmCuu08B7gTWD9m/EPihux8r72WBmX3OzLaa2daDBw+We7o0m97e6KAtZ+LEoPVt6lTIZtOpl4iISIKKBm7u/ofu3lFg+/GQQ78DLMg9MLPpwD8QjGH77dDrmtkE4BJ3fzAs+j5w+ZDDFjLYTQqwDzg77/GUsKxQve9w91nuPmvChII57KRVrF0LCxYUPy7n6aeDIK67u3Z1EhERqYFqZ5VOzXs4D3giLG8HeoHr3H13xOmvAqeb2YXh46uBXXnXvgg4A/hV3jn3AB8xszPM7AzgI2GZDBddXSeOX1u9urJrFWuhExERaTDVjnG7xczeAwwAe4DPh+WrgPHA7WYGcDQ3O8LMNgE3uPt+M/ss0GNmAwSB3OK8ay8E7va8aa/u/oqZ3Qw8HBatdfdXqnwN0gyyWbj8cnj22XrXREREpG6qSgfSLJQOpMllMjB9OpTzf3XMGNi0Ca6+Go4ejT5uGPz/FxGR5lKzdCAiqejsLD/Aeu654N+4oE1ERKTJKHCTxlbJBIK+PvjlL4PxcHE2bqysTiIiInWiwE0aU38/nHRSeRMILrooyNUGxWeZ9vTA4sXxx4iIiDQYBW7SWHIBW1cXDAxEH7d+fdB9mr/t2gUHDxZvaVu/HubPT7TaIiIiaah65QSRqmWzcMUV8NRTpZ+zbFnh61xySfx5GzeqpU1ERJqWAjepvw99KEiKW6q+vsLlV18d3UrX06NWNhERaXrqKpX6KzVo6+kJukTnzCm8f+fOwuVjxpQWtPX2npjcN3+7/vrS6ikiIlIjCtyk8eUmHVTaYvbQQ8WP6e8vPqHhrrsqe34REZGEKHCTxtbXF0w6aGur/Bqdnce3nPX3B+X5LWzFJjSIiIg0AI1xk8ZUyxUNFKSJiEiTUoub1Fc2W+8alGf06GAJLhERkTpQ4Cb1NXt2ctfq6UnuWlGOHAm6XnPdrSIiIilS4Cb1s3YtPP98ctebPz+9Zayuuiqd55HGM3T28cUXN1/LsYg0LQVuUh/vfS+sXp38dRcvPnFFhQMHgg/XJMWt6iCtKRewDZ19/MQTQS5CEZEUKHCT9G3YAI8/Hr1//fpkn6+tLXi+oQGdSKnWro1PF1NOAmkRkSpoVqmk68Yb4fbbo/evX194OatG09lZ7xpIGrJZuPTSoNVWRKQBKHCT9LzrXcEi8FHa29MN2trbYe/eys79y79MtCrSgPr7lTpGRBqOukolHd3d8UEblLbCQZL27IHx4ys7d8kS+NjHkq1PrWUyMGpU/LJeUVtvb71rn67u7vKCttGja1cXEZE8Ctyk9hYuDAKdOD091a2OUKnf/GZwzNvSpeWde889talT0jZsCIKvzk54663KrrFgAUyePDxmT/b2Fv//OtTDD9emLiIiQ5hXMUjbzG4G5gEDwMvAInffb2bXAl8CDPgd8Gfu/liB868C1hEEkK+F5z9tZhuA3NfdscC73P2d4TnHgNxq4nvd/Y+K1XPWrFm+devWil+nVCibhWnT4JVX4o+bMAFefjmdOpWju7v4B3ijT3LIZmHixOSud9ZZsH9/ctdrNJV2jzb6/wMRaSpmts3dZxXaV22L2zp3n+7ulwI/AVaF5c8BV7p7J3AzcEfE+d8Crg3P/y5wE4C7L3P3S8Py/wbk99Mczu0rJWiTOnr/+4sHbWvWNGbQBoOpReIGpjdqF2I2G7SyJRm0Abz0UuO+5mplsxrTJiINr6rAzd0P5T0cB3hYvtndXw3LtwBToi4BnBb+fDpQ6Kv8p4DvVVNPqZMXXojf39MDq1bFH9MI2tqCxe4LiUsRUS/9/ckHbPkWLAi6X1tJNhtMVolz+eXp1EVEJEbVY9zM7Gtm9gJwLYMtbvmWAD+NOP0GYJOZvQhcB9wy5NrnAO8G7s8rHm1mW81si5l9otr6Sw1kMjB2bPwx06YFKx00izlz6l2D0vT2lt5qtH79ibntcltfX9BiF2X58vj9zSSTCQLduPF/a9bAm28W3qeJCSKSoqKBm5n9wswyBbZ5AO7+FXc/G/gO8IUh53YRBG5firj8MmCuu08B7gSGZl5dCPzQ3Y/llZ0T9vv+MfA3ZnZ+RL0/FwZ4Ww8Wm80oychmYcyYYBD84cOFj3nnO4Oux1//OtWqJSKNtVBL1d1dePZnKS2AixYFwdnQ1Ctr1w5ep6treIzb6u0tnpNvzZqgZXj79sL7NTFBRFJU1eSE4y5k1g5scveO8PF04EfAx919d4HjJwBb3P38vPN/5u7T8o55BLjR3TdHPOddwE/c/YdxddPkhJSMHh0swh6n2YOBQq1MO3dCR0e6z1mppUvhtttOLC9lIkYhzXo/s1mYORP27Ys/rr09SBsD0fehWd8DEWlYNZucYGZT8x7OA54Iy9sJJhRcVyhoC70KnG5mF4aPrwZ25V37IuAM4Fd5ZWeY2ajw5zOBDwIxaydJas46q3jQltYC8Gnr7AzGlSUll74jtyUh18pWKGiDyoK2ZrVyZdA1WixoGzVqMLfgcEiDIiJNodqVE24xs/cQpAPZA3w+LF8FjAdut+CD52gucjSzTcANYdqQzwI9ZjZAEMgtzrv2QuBuP75J8GLg78LjRwC3uLsCt3orZUmgnp7mGtNWrq6uyl9jpa1dpVq0CO68s3bXbxZr18Lq1aUdO3kybNs2mFtw7tzCx7XKOD8RaRqJdZU2MnWV1tAHPwibC/ZkDzpwoD7JdWuh2Ad1Zyfce2/86+3tTW82aqlrv1YSgOR3IzaylSth3brSj8+NacsX9f709TXPxBURaRpxXaVaq1SKy2SCnGxRs+rirFjROkEbBK1qcUHXzp1BN1zuA72/Hz784dqPg6rm+lGpPWo9dq+WMhmYMQPefru88zZuDPL3lUpBm4ikTC1uEq/a1qFW/P+VZotZlCTf11YadF/pygcrVsCttxbel8lEzzxtxvdIRBpeLVdOkFZXaYBy+eWt+6E2f37Q/Xvxxek8X0/PiXnWkrJwYXLXqrdyF4aHYFLNgQPRQRvA7NmFyzW+TUTqQIGb1MYvf1nvGtRWWxs8/nj0igqV6us7MUir1aSObBa+//3C+y66qDbPWStr15Y3wWPy5CBg27+/eFf+668XLr///sLlIiI1pMBNkpXLxj9czJkTBFsjKvxVuuiiIIDIpUrp6gpacrq7E6tiQbnVAqIkmd6k1rq7S58t2t4evN8vvlja2Mu490Hj20SkDhS4SfXyu/JKmcHYaubMgWPHigdwY8YEA/7zW9N27YJvfvPE1qIlS4Jr1SKA6u6OXy1g0aLmmVBSaiqVNWuC93vPntJfmxadF5EGpMkJw1XuQ2nXruLHluPCC+HJJ5O9ZisqN3ebWdA1V20rTzZbfAH6ZvqbUGycWdRKEaWYOhWefjp6fzO9TyLSVDQ5QQL9/XDSScGH3cSJyQdtALujFspoAkNXLMhtUekyKpXNlp9w132wG7WalriZM+P3X3NNZddtRBs3Vh60dXfHB22NtG6tiAwrCtxaXTYL06YNLhw+MFDvGjWW/GBt+fLCxyxfnuyYs6uvru78/CBuzJhgvFqp4pZ5uuYauPvu6urWKFasKC8fW77+/vjA+pRTWnsVEBFpaArcWllvb+1a1ppZd3fxYG2oJUuC97Na/f3BOLekvPkmXHJJ9WtpLl3aOkEbxKf3iFPKuLbt2yu7tohIAhS4taLe3iAoqXeS2EazcGHwvlS6Lmi17+eGDcWDgmLjzwoZGIDzz688eFu/vvIuxXqqxcLvl10Wv3/jxuZdTUJEWoICt1aSa0mqJMAolD+slK2vLxg3B8G/Sec1q9bKlYOta1E5y8pRSatbNgsTJsS37uVmm7700vHvbalefz0I+ioZ+/a735V/TiO45JJkr9ffD3v3Ru9fv77y7lcRkYRoVmmzq3R26AUXwAMPNE/ah3Jt2FB6N2i5hv7OVLrMUk5nJ+zYEX9MuevFjhgB99134izUuFmYPT3NM3brxhvh9tuj95f7d63YbNvRo+Hw4fKuKSJSIc0qbVX9/eWPYcvlXHvqqdYM2tauLW/sWr5c8mD3+FmD+V10a9dWF7SNGAH33lv8uI6OIHBwL22M3MBAUK9yJi8sWDDYOrlyZWnn1EN3d3zQVsmMz2ITRh5+uPxriojUgAK3ZpTrEi0nYNi4sbbLJ9Vb7j0pNYN+jtlgN3F+8uD58wdXMxhq7tzg32y2/Ocb+tyPPVZ+AN3RUfoEhzffDFr0xo0LArizzy7tvHXrCqdGqWWalFLUasZn3PvZ16dxbSLSMBS4NZPcpINyBtefckrwodTKY3NWrix/wsGiRUGwNjAQndQ26j3LzSqsJq1HW1swnq3SgCAXvI0ZU9rxb7wRBHD79gXj7ZKwfHm6AVwpi8gnPeNz9GgtbSUiDUWBWzOoZJZorkv0rbdat7UgkwkmRKxbV9rxK1YMdoXeeWdp58yYEb2v0rQeixYF62VW21Xd0REEZDt3wtixpZ0zMAAHD1b3vEPlArj8bfTo8vLLxcm1phYLznfuTP7/+uzZyV5PRKRKCtwa1aWXDn4IVhKwtWqXaM6GDUELUikJhc87LwiUKsnttWlT4fJiQcmsWdEzcUsNGkvV0RHMKnWP7t5N25Ejwf3JD+ZKXfEhm4UpUwbPK6U1df362nxB6e9PJn+fiEhCNKu0EWUy8YuAF9JMMwKrUc4MzjVrYNWq6p+z0EzMMWMKzzLs66t/11o2G3TjJpnot5ElseJDsTVPh8HfSRFpHJpV2mw++MHSjx0OLWz9/YOtL6UGbT09yQRtELQUDRWVGqLeQRsEXbA7dgzOQC11HFyUGTOCFstGXJ9z0aJkVnx4xzuqv4aISAqqDtzM7GYz22Fmj5rZz81sUlh+bVi+08w2m1nBbJlmdpWZbQ/Pf8DMLgjL282sz8weCa8zN++cL5vZ02b2pJl9tNrX0HAOHSrtuAMHWjtgg/JzpOVmiSb5vtx3X3LXSlsl4+CG2r49SDvTaCtxrFmTXLfzoUPxrWo33pjM84iIVCmJFrd17j7d3S8FfgLkmjmeA650907gZuCOiPO/BVwbnv9d4Kaw/CbgB+7+PmAhcDuAmU0LH78X+Bhwu5mdlMDrqK/8VqU4F10UBGzurZmHLSeTCVJYlBO0LV0aP0u0UqVer9qWrVrKjYM7cKD8bvhGk2tlTqpFNd/69YXLb7+9NktsiYiUqerAzd3zm4fGAR6Wb3b3V8PyLcCUqEsAp4U/nw7sL1I+D7jb3Y+4+3PA00CRBQYbRDYbzFI7+eRgNuTs2cEg+1K7AN2DZLutHLBBEMR2dgYtRaUYOTJoUar3epsPPVTf5y9F0t2oacjd39zkjlq2Mufn8htq5szaPa+ISIkSGeNmZl8zsxeAaxlsccu3BPhpxOk3AJvM7EXgOuCWsPyrwJ+E5ZuAPw/LJwMv5J3/YljWWPr7g7FR+bPqJk6EBx+EY8eClqEHHyye4T9/NmKry2aDD8dyWtn6+oIZjLVOeTJuXPFjmi3tShLdqMWsWTMYJJ5ySvHj81evyG1p3N98J59cuHzfvsrWghURSVBJgZuZ/cLMMgW2eQDu/hV3Pxv4DvCFIed2EQRuX4q4/DJgrrtPAe4Ecn0VnwLuCsvnAv9oZiUHmmb2OTPbamZbDyadt2qoG288MY9VV9fwCLaSNHdu8QSquVUOcltakwG2bEnneeohP51Ibqu2S3XMmCBYy3VndnQEOQWjUqTktrgWr7Q88kj0vmqWNxMRSUCi6UDMrB3Y5O4d4ePpwI+Aj7v77gLHTwC2uPv5eef/zN2nmdmvgY+5+wvhvmeB2QRBIO7+9bD8HuCr7v6rqHrVPB1IsXFp1RguwV+xRb7HjQuCp3q2ahVL09LK9+r66+Guu0o7thaJcNM2eTLs319433BJvSMidVPTdCBmNjXv4TzgibC8HegFrisUtIVeBU43swvDx1cDuRXT9wJXhde6GBgNHAT+GVhoZqPM7N3AVKAJBhdJrLlzo/f19cFrr9U/GOjoiE6J0deXbl3Sduedx7eMFXofxo5tjaAN4lt+G212rYgMK0mMcbsl7DbdAXwE+IuwfBUwnmDW56Nm9vsmLzPbZGaT3P0o8Fmgx8weIxjjtiI87K+Az4bl3wMWeeDXwA+Ax4GfATe6+7EEXofUSzYb/UG5c2dj5EbLmT//xJmH69c3Vh3TMH/+id2cr7/eGkEbBJM44lah6O5Ory4iInm0ckISbrwxSBeQtI0bW3tx+JyZMwsHbjNmwLZt6ddHJCduGMQw+NspIvWhlRNq7bbbjm95SGqpoeEQtEF0a1vUOqEiaYlbLaLcGaa9vcdPYNIaqCJSAQVutdDRUXz2nDu0t9e7po1rxozWz1cnjS9uEkKpM0yzWZg+/cSxcQsWKL2IiJRNgVs97d0bvW/p0vTqUU9R2ejV2iaNIq7VrdhqCpkMTJoU3Qp/1VWV10tEhiUFbo2q3qsApCVqNqla26RRxLW6zZ4dvS+XPmZgIPqYgYHgOBGREilwk/oqlnBXpBFErWH6/PPHj1ubOTMIxGbOLD2BcWenxruJSMk0q7SeNGOt8HvQ2RmspynSSGqZaBuGz++8iBSlWaWNKJsNsrMPZ1FdRPfem249REREmoQCt3ro7g6Wd9q3r941qZ+45aM0vk0aUdwkhVLMmBFMUhg1Kpn6iMiwpMCtHpYsqXcN6iubhUsuKbxv7Nh06yJSqvnzg8BrzJjyzhsxIjhv27YgVdCRI7Wpn4gMCwrcJF3ZLJx/fvRMuwcfTLc+IuXo6IA33jg+H2OxdWr37x9cCqxY+hARkSIUuKWtlD/cEybUvh71kAvaXn+98P4ZM1pnrUsZPuLWqe3rO77r/4orCh83cmSiVRKR1qXALW1ReZ/6+ga/wb/8crp1SkOxoG3cOCXdldYzNKh76qnCx2lNXhEpkQK3tD3/fOHyuG/tza6/P5iMERW0jRgBzzyjSQkyfKmlWURKdHK9KyAtKpOByy6Dw4eLH/vYYwrapPVFJdnduDHdeohIU1Pglqa1awuXV5tmoBFkMvCBDwQDt8uxc6daG6R1lZK0d/Hi2tdDRFqGukrT0tsLq1cX3he3FmKjymZh+vTBpX46OxW0yfDVCl++RKQpKHBLQzYLCxbUuxbJyGaDdRgnTgwCr0qMHaugTVpLpV++iqUSEREZQl2lafjQh6L3nXdeevWoViYTJM6NysFWzIgRcN99rT0RQ6Qc+l0QkTKpxa3Wurvh6acL72tvD2ZTNrpcK1tnZ/lB24gRg6lOjh3TB5W0rvXryzv+pJNqUw8RaWlVBW5mdrOZ7TCzR83s52Y2KSy/NizfaWabzazg+kZmdpWZbQ/Pf8DMLgjL282sz8weCa8zNyw/18wOh8c/amb/vZr6pyJueauHHkqvHpXIZIJuzYkTYfv20s4ZNy7oBs3lpFOwJsPFsmXHr6hQzLFjta+TiLScalvc1rn7dHe/FPgJsCosfw640t07gZuBOyLO/xZwbXj+d4GbwvKbgB+4+/uAhcDteec84+6Xhtvnq6x/bWUy0fs2bmzcFBj9/UFLWWdnaek8ZsyAAweCD6vXXtPYNRGAs86qdw1EpAVVFbi5+6G8h+MAD8s3u/urYfkWYErUJYDTwp9PB/YXKW8uM2cWLt+4sTFTAGQywQLaXV2ltRjkL57dqEGoSL088kjx34v+/lSqIiKtw7yUD+i4C5h9Dfg08K9Al7sfHLL/i8BF7n5DgXOvAP4JOAwcAma7+yEzOwv4OXAGQUD4h+6+zczOBX4N7A6Pv8nd/2+xOs6aNcu3bt1a+YusVFQOpyrf80Rls8HkiahxeFFmzAiWqFLAJlJcf3/whaiQRvp7ICINwcy2ufusgvuKBW5m9gtgYoFdX3H3H+cd92VgtLuvzivrIujm/JC7/7bAtXuBv3b3B81sBfAed7/BzJaHdfummf0bYCPQAZwCnOruvzWzmQRB33uHtPzlrv054HMA7e3tM/fs2RP7OmuiUOBmVvmszKRls8Gs1nLyr2lmqEhlor7InXYa7N6tL0Ei8ntxgVvRdCDu/oclPs93gE3A6vBJpwP/AHw8ImibAFzi7g+GRd8Hfhb+vAT4WPj8vzKz0cCZ7v4ycCQs32ZmzwAXAic0p7n7HYRj62bNmpX+V9ru7sLl99+fbj3izJ1betA2bhxs2aLxayJJO3QoGE/68sv1romINIFqZ5VOzXs4D3giLG8HeoHr3H13xOmvAqeb2YXh46uBXeHPe4GrwmtdDIwGDprZBDM7KSw/D5gKPFvNa6iZqNmkjdJSlcmUNlO0p0eTDkSSsGJF9L6DB6P3iYjkqTYB7y1m9h5gANgD5GZ5rgLGA7db0D1wNNfkZ2abgBvcfb+ZfRboMbMBgkAuN2L/r4C/N7NlBBMVFrm7m9m/Bdaa2dvhc37e3V+p8jUMT7Nnx++/+OIg/5q6b0SSceut8O1vB0MUREQqVPXkhGZQl8kJjT4xIap+fX2N0yoo0mqy2SBNSKG/A43yt0FE6q6qMW5SgQ0bCpdv3JhuPaJE5ZfT+qEitbVrlwI0EamKWtxqoZFb27JZmDSp8MzWRqifSCuL+tsA+v0Tkd+La3HTWqVJi1stoRHMnVs4aJsxI/26iAwna9fWuwYi0gIUuCXtkoLLssZ/005L3EzSTZvSrYvIcLN6dfS+RhlGISINT4Fbkm68MTq5biPkb/vABwqXz5ih2aMi9bJ+fWMugSciDUlj3JLUyONX3v9+iHoPDhxQ4CZSa4X+PowcCUeOpF8XEWloGuNWb2vW1Pf5N2yIDtrU2iZSP2+91fjjYkWkoSgdSBpWrarP82YyQWD29tvRx2hsm0h9dXbWv0VeRJqGWtzS0N+fzvNkMjB2bNAlYxZ8IMQFbaDWNpG0nBzzPVkzTkWkRArcktTTU7i8q6t2z9ndfXygdvhw6eeO0O0XSc0jj0Tvi5txKiKSR5/cSZo/P3pfLdYnXLkyejH7Utx3X3J1EZF4HR1wzTXR+1euTK8uItK0FLilpdii7uXIZmHyZFi3rrLze3qCMTVak1QkXXffHb1v3bpglqkmK4hIDAVuSVu/vnD5888HXZNJjHd73/tg//7yzhkxIlhA3j2+ZVBEamvFiuh9b78dDHnQmDcRiaA8brVQbJWEESOCbspSWrz6+ysbI3fxxUGgpskHIo2nlJVUzj4bHn5Yv8Miw5DyuKWtWN62gYEgGDv//BPHvvX3D042MCsvaBs5EnbuDFrVHn9cf/BFGlVUy3y+F16AKVNqMz5WRJqWArdaWLUKzjuv+HHPPgsTJ1YeqOVbsSLIwN7RUdn5IpKeZctKW5/06FEFbyJyHAVutbJ5M1xwQTrPtXQp3HprOs8lIslYvDhoHS/WQn/0KFx2WTp1EpGGp8CtVtra4KmngnFmtXbbbbV/DhGpjVWrgiEOcePe9u4Nlq4TkWFPgVutzZkTfKtOKoDbuDG4Xv4mIs2towNeeglOOSX6mOXL1WUqIgrcUpML4KJWVyjEbDCFR25bvLhmVRSROmprCyYkxAVv6jIVGfaqCtzM7GYz22Fmj5rZz81sUlh+bVi+08w2m9klEedfZWbbw/MfMLMLwvJzzOy+8Br9ZjYl75zPmNlT4faZaupfF/Pnn9hiFrUNDChJrshwkgveouzdGyxzJyLDVrUtbuvcfbq7Xwr8BFgVlj8HXOnuncDNwB0R538LuDY8/7vATWH5N4Bvu/t0YC3wdQAz+wNgNfAB4DJgtZmdUeVrEBFpHG1t8S3zS5ZodQWRYayqwM3dD+U9HAd4WL7Z3V8Ny7cAU4aem7sEcFr48+lAbjmAacD94c99wLzw548C97r7K+H17wU+Vs1rEBFpOPPnw6hR0ftnFczLKSLDwMnVXsDMvgZ8GvhXoFASsiXATyNOvwHYZGaHgUNAbkHPx4D5wH8FPgm8w8zGA5OB/H6EF8MyEZHWsnVrsPxVIUeOpFsXEWkYRVvczOwXZpYpsM0DcPevuPvZwHeALww5t4sgcPtSxOWXAXPdfQpwJ5BLJ/5F4EozewS4EtgHHCvnhZnZ58xsq5ltPXjwYDmniojUX0cHTJ0avV/dpSLDUmJrlZpZO7DJ3TvCx9OBHwEfd/fdBY6fAGxx9/Pzzv+Zu08bctypwBPuPsXMPgXMcfc/Dff9HdDv7t+Lq1vqa5WKiCQhmw1WVylk5Ei1vIm0qJqtVWpm+V8H5wFPhOXtQC9wXaGgLfQqcLqZXRg+vhrYFZ5/ppnl6vZlIDeN6h7gI2Z2Rjgp4SNhmYhI62lri84B+dZb6dZFRBpCtWPcbjGz9wADwB7g82H5KmA8cLsF2cCP5iJHM9sE3ODu+83ss0CPmQ0QBHK5JGVzgK+bmQP/AtwI4O6vmNnNwMPhcWvd/ZUqX4OISOOKSwnU2xtMZBCRYSOxrtJGpq5SEWlqGzYEKycUMgz+hosMNzXrKhURkRQsWxa9r7c3vXqISN0pcBMRaQbnnlu4fMGCVKshIvWlwE1EpBls2RK9b+3a9OohInWlwE1EpBm0tUWvprB6NaxcmW59RKQuFLiJiDSLuElW69ZpAXqRYUCBm4hIs+jogI0bo/cvWQL9/alVR0TSp8BNRKSZLF4Ma9ZE7+/q0nJYIi1MgZuISLNZtSpY8ipKZ6eCN5EWpcBNRKQZbdsWv7+zU92mIi1IgZuISDPq6ID16+OP6epSqhCRFqPATUSkWS1bFj/eDYJUIRs2pFMfEak5BW4iIs1s1SpYsSL+mOXLFbyJtAgFbiIize7WW2Hp0vhjli/XmDeRFqDATUSkFdx2W/FuU6UKEWl6CtxERFrFqlXxCXoBLr00laqISG0ocBMRaSWLF8fPNj12LMgBp5Y3kaakwE1EpNUsWwaTJkXvf/vtIM/bOedANptevUSkagrcRERa0fbtcNJJ8cfs3QsTJ4JZfbbRo9XyJ1ImBW4iIq2orQ327SsevNXTkSNBy9/KlfWuiUjTqCpwM7ObzWyHmT1qZj83s0lh+bVh+U4z22xml0Scf5WZbQ/Pf8DMLgjLzzGz+8Jr9JvZlLxzjoXHP2pm/1xN/UVEWlozBG8A69bBJz5R71qINIVqW9zWuft0d78U+AmwKix/DrjS3TuBm4E7Is7/FnBteP53gZvC8m8A33b36cBa4Ot55xx290vD7Y+qrL+ISGvLBW+TJ9e7JvF+/GO4/vp610Kk4VUVuLn7obyH4wAPyze7+6th+RZgytBzc5cATgt/Ph3YH/48Dbg//LkPmFdNPUVEhrW2NnjxRbjggnrXJN5dd9W7BiINr+oxbmb2NTN7AbiWwRa3fEuAn0acfgOwycxeBK4DbgnLHwPmhz9/EniHmY0PH482s61mtsXMPlFt/UVEho0HHghSgRQzahTs3AnuyW9xqUoA1q5N5rWKtKiigZuZ/cLMMgW2eQDu/hV3Pxv4DvCFIed2EQRuX4q4/DJgrrtPAe4Ecr/RXwSuNLNHgCuBfcCxcN857j4L+GPgb8zs/Ih6fy4M8LYePHiw2MsUEWl9bW3BTNLzzos/LjdpoBZLZC1bBgcORO9fvVqTFURimLsncyGzdmCTu3eEj6cDPwI+7u67Cxw/Adji7ufnnf8zd5825LhTgSfC4G7oNe4CfuLuP4yr26xZs3zr1q2VvTARkVbU2wsLFpR2bF8fzJmT7PObxe9fsyZYCUKkWpkMvP/98Oab0ceMHg0PPwwdHenVK4aZbQsbqU5Q7azSqXkP5wFPhOXtQC9wXaGgLfQqcLqZXRg+vhrYFZ5/ppnl6vZloDssP8PMRuWOAT4IPF7NaxARGZbmz4eentKO7eo6Pv9aEisvFFuaa/Xq2rT4yfCSzcL06fFBGwT7OzsH/49PmtSwyamrHeN2S9htugP4CPAXYfkqYDxwe5i24/fNXWa2ycwmuftR4LNAj5k9RjDGbUV42BzgSTPbDbQBXwvLLwa2hsf3Abe4uwI3EZFKzJ8fjGUbPbq883IrL5gF4+EqCeIWL4alS+OP6eoq/7rSuHp7CydirmWA9KEPBWMry/XSS8cnp26gsZeJdZU2MnWViogUsWEDLF+ezLXGjoUHHyyt26lYl+0118DddydTL0lfJgMzZ8Jbb5V/bk9P8OWimufu7Kz8/Dg17sqP6ypV4CYiIoFMBi67DA4fTvd5J02C/fuj9w+Dz6mml83CFVfAU0+l83xjxsBDD8V/ORg5MmgdrpULL4Qnn6zJpWs2xk1ERFpIRwe88UYQKO3cGbScpSEuaIOG6qaSPN3dg12JEyemF7RB8OUif0za0G38+Oig7d3vhhkzqq/D7qgh/LWlwE1ERE7U0QGvvz6Yf63UiQy1sHo1LFxYv+eXQfnj1JYsqXdtor3ySvS+X/0Ktm07Pr/ggQNw5pnp1a8KCtxERKS4+fNP/KBLotWiVN//fvUzWaUymUwwCcWs9BQyjaqvL8hnOFRbGxw82BhfVIpQ4CYiIuVrayvcalHLYG5o19iGDbV7ruEuP1jr7KxsckEhGzdGr6qxc2fwnLVUaj7CoV9UGogCNxERSUahYC7uQ7raMXTLl8O4cQ2bb6vp5HeDJhGs9fWdeN8XL44+vqMjyKcW9X+mr6+6+hTLHRgn9/wnnRQ8Pumk6utTIQVuIiKSvqFj6HLB3KmnlnedN94IsuJLZfr7B4O1arpBJ08OWlzz72fSq23MmRP/ZWDNmuhzly6NDxpLff6jR4PnOno0+ddXIgVuIiLSGDo64He/Cz4YFy0q/bwXXqhZlcq2cmXhWY7d3fWu2aBMJkinYVZdkuORI4Ng2x1efLHw2LE0rVoVHdTddlt965YgBW4iItJ47rwT5s2rdy3Kc/31sG5d4X1LlgSB0ujRMHt2kAMsKpVF/pZkKpRc61pnZ/EloKKYDXaBHjnSMGt7DidKwCsiIs0hbmH6en6WrVwZHbAl7bzzYPPm0lu3SllgvRTVrmIgZVECXhERaW1JT1DIZmHKlNJaxdIK2gCefTZ+Dc1MJmjVy59kUEnQlt+y5q6grYEocBMRkeaXH8yUsvX3R19r3Ljgevv2pVb9iq1eHbyeT3wCTjklCNSOHKn8elOnBpMMBgbqNvhe4ilwExGR5lBNOoehurqig7o33kjuedLy4x8HMx0rMXr04CSD3bvrP8lAYilwExGR5rB4cTDGq1mcemp8ioqc/G7JAwegvb32dYNg3Jp7sO6nJhk0DQVuIiLSPJ55pt41KE1nJzz9dHyKityW3y3Z1gZ79tRuNYFcV6jGrTUtBW4iItJcdu4czGCfllNOGexOLGXbsSOZLsehqwmUm60/P9eaukJbggI3ERFpLh0dgxnsh27XXFP4nPHjK3uu9vbgum+91RjdibnVAw4cgHe+M/q4XMCmXGstR4GbiIi0jrvvLhzQ/eY35S2RZBYER3v2pFf3crS1wauvDnannnZaUH7aaQrYWpwS8IqIiIg0ECXgFREREWkBCtxEREREmoQCNxEREZEmocBNREREpEkMi8kJZnYQaNCpQYk5E/hNvSshVdN9bA26j61B97E1NON9PMfdJxTaMSwCt+HAzLZGzUCR5qH72Bp0H1uD7mNraLX7qK5SERERkSahwE1ERESkSShwax131LsCkgjdx9ag+9gadB9bQ0vdR41xExEREWkSanETERERaRIK3BqEmXWb2ctmlskr+6qZ7TOzR8Ntblg+3sz6zOw1M/vbmGtGnX+Kmf0PM9tpZrvM7Mu1f4XDQy3uY3jsn5vZE2b2azO7Na/8y2b2tJk9aWYfrd0rGz7SvIdmdrWZbQt/F7eZ2Ydr++qGj7R/F8N97eE1vlibVzX81OFv6nQz+1VYvtPMRtfu1VXm5HpXQH7vLuBvgW8PKd/g7t8YUvYm8J+BjnCLU+j8fw+McvdOMxsLPG5m33P35yuqueS7i4Tvo5l1AfOAS9z9iJm9KyyfBiwE3gtMAn5hZhe6+7EkXsgwdhcp3UOC3FL/zt33m1kHcA8wufqXIKR7H3PWAz+tptJygrtI72/qycD/BK5z98fMbDzwdiKvIkFqcWsQ7v4vwCslHvu6uz9A8J+0oqcDxoX/SccAbwGHKryW5KnRffwz4BZ3PxKe93JYPg+4292PuPtzwNPAZZXVXHLSvIfu/oi77w+P+TUwxsxGVVZzyZfy7yJm9gngOYL7KAlJ+T5+BNjh7o+F5b9txC/CCtwa3xfMbEfYXHxGQuf/EHgdeAnYC3zD3Uv6xZCKVXMfLwSuMLMHzez/mNn7w/LJwAt5x72IWmtqqRb3MN8CYHvuw0RqJvH7aGanAl8C1iRdWYlUi9/HCwE3s3vMbLuZrUy2yslQ4NbYvgWcD1xKEGR9M6HzLwOOEXSvvRv4KzM7r/rqSoRq7+PJwB8As4EVwA/MzJKsoBRV03toZu8F/hr40yQqK5FqdR+/StB191piNZU4tbqPJwMfAq4N//2kmV2VUJ0To8Ctgbl71t2PufsA8PeU2Q0Wc/4fAz9z97fDJuJfAi2zHEijqfY+ErSk9XrgIWCAYO29fcDZecdNCcskYTW8h5jZFOBHwKfd/Zkk6y3Hq+F9/ABwq5k9D/wl8J/M7AvJ1Vzy1fA+vgj8i7v/xt3fADYBM5KsexIUuDUwMzsr7+EngUzUsWWevxf4cHjMOIJvHU9UXlOJU+19BP4J6AqvdSEwkmBQ+z8DC81slJm9G5gKPFR1heUEtbqHZvZO4H8D/9Hdf1l9TSVOre6ju1/h7ue6+7nA3wD/xd1jZzVK5Wr4N/UeoNPMxoZjwK8EHq+6wklzd20NsAHfI2jyfZsg6l8C/COwE9hB8CF9Vt7xzxMM2HwtPH5aWP4PwKzw54LnA6cC/4tgEO3jwIp6v/5W2Wp0H0cSzHTKANuBD+ed/xXgGeBJ4OP1fv2tsKV5D4GbCMabPpq3vave70ErbGn/LuZd56vAF+v9+ltlq8Pf1D8h+GzMALfW+/UX2rRygoiIiEiTUFepiIiISJNQ4CYiIiLSJBS4iYiIiDQJBW4iIiIiTUKBm4iIiEiTUOAmIiIi0iQUuImIiIg0CQVuIiIiIk3i/wNrCbNEVA7JmAAAAABJRU5ErkJggg==\n",
"text/plain": [
"
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" numpy.timedelta64(1000000000,'ns'),\n",
" ...]"
]
},
"execution_count": 156,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Task 6\n",
"timeDiff = []\n",
"for i in range(len(time_num)):\n",
" x = time_num[i]- time_num[i-1] \n",
" timeDiff.append(x)\n",
"timeDiff"
]
},
{
"cell_type": "code",
"execution_count": 167,
"id": "c8c424ec",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[3.7453753689,\n",
" 0.5753658473,\n",
" 1.618997194,\n",
" 1.9522775823,\n",
" 2.7531816433,\n",
" 1.9132806026,\n",
" 2.4226023495,\n",
" 2.1360727964,\n",
" 1.0859252039,\n",
" 1.0045518841,\n",
" 0.8068771528,\n",
" 0.9166034423,\n",
" 1.08109636,\n",
" 0.8558737941,\n",
" 0.4361868596,\n",
" 0.2571625595,\n",
" 0.3519683757,\n",
" 0.2103530944,\n",
" 0.0290352714,\n",
" 0.3567263165,\n",
" 0.246015401,\n",
" 0.1281734305,\n",
" 0.2424528604,\n",
" 0.2172864511,\n",
" 0.1483728133,\n",
" 0.3057751747,\n",
" 0.0804474624,\n",
" 0.0871058137,\n",
" 0.1493292195,\n",
" 0.0719207644,\n",
" 0.0078258068,\n",
" 0.1521521373,\n",
" 0.0615038454,\n",
" 0.1184902561,\n",
" 0.2483390336,\n",
" 0.3504862345,\n",
" 0.3597313989,\n",
" 0.3416427707,\n",
" 0.4629219884,\n",
" 0.2051360063,\n",
" 0.4022372408,\n",
" 0.2542479732,\n",
" 0.1738049305,\n",
" 0.0728571899,\n",
" 0.0831031101,\n",
" 0.1206711684,\n",
" 0.139065525,\n",
" 0.1783631147,\n",
" 0.217088479,\n",
" 0.0419725544,\n",
" 0.273959228,\n",
" 0.1775768147,\n",
" 0.113885574,\n",
" 0.0202166157,\n",
" 0.1589940127,\n",
" 0.215762271,\n",
" 0.1742231987,\n",
" 0.3862857321,\n",
" 0.101735468,\n",
" 0.0486802313,\n",
" 0.095741804,\n",
" 0.121700578,\n",
" 0.0615038357,\n",
" 0.1025679995,\n",
" 0.0121700578,\n",
" 0.0402237215,\n",
" 0.0093202511,\n",
" 0.0757793187,\n",
" 0.1379851674,\n",
" 0.1201942773,\n",
" 0.0547806378,\n",
" 0.1046699587,\n",
" 0.029977615,\n",
" 0.0182164762,\n",
" 0.0682517082,\n",
" 0.031303222,\n",
" 0.0782823943,\n",
" 0.0555678456,\n",
" 0.0661546172,\n",
" 0.0599552305,\n",
" 0.0796904959,\n",
" 0.101083079,\n",
" 0.0606498474,\n",
" 0.1127637933,\n",
" 0.0521810895,\n",
" 0.1143482072,\n",
" 0.0372810043,\n",
" 0.1343382399,\n",
" 0.1420924908,\n",
" 0.2160270176,\n",
" 0.267207369,\n",
" 0.2093399196,\n",
" 0.1653956924,\n",
" 0.048092459,\n",
" 0.1722672774,\n",
" 0.0186405022,\n",
" 0.2053831288,\n",
" 0.0905109663,\n",
" 0.1493292194,\n",
" 0.5449799046,\n",
" 0.1037106054,\n",
" 0.1307179826,\n",
" 0.5779051516,\n",
" 0.0606498487,\n",
" 0.0380935241,\n",
" 0.0606498477,\n",
" 0.0202166163,\n",
" 0.0925597905,\n",
" 0.0844534225,\n",
" 0.0156516139,\n",
" 0.0693374085,\n",
" 0.0433422392,\n",
" 0.0486802359,\n",
" 0.0804474605,\n",
" 0.012170059,\n",
" 0.0186405022,\n",
" 0.0252597779,\n",
" 0.0632964093,\n",
" 0.0782580702,\n",
" 0.0486802359,\n",
" 0.0480924641,\n",
" 0.1221700028,\n",
" 0.0804474611,\n",
" 0.2249147109,\n",
" 0.2745368004,\n",
" 0.7522019019,\n",
" 1.1283028475,\n",
" 0.8980134877,\n",
" 1.6727492758,\n",
" 1.4494786303,\n",
" 1.1457503286,\n",
" 1.2231954578,\n",
" 2.2121717137,\n",
" 0.8634074438,\n",
" 1.5820815321,\n",
" 2.5836589792,\n",
" 2.6662332137,\n",
" 3.0623073517,\n",
" 3.5460934314,\n",
" 3.6099140008,\n",
" 3.3343023785,\n",
" 3.3438694821,\n",
" 3.6222857458,\n",
" 3.9740902948,\n",
" 4.158961567,\n",
" 4.9797910784,\n",
" 5.15060335,\n",
" 5.3442999312,\n",
" 5.4013958684,\n",
" 5.839158006,\n",
" 6.1119463965,\n",
" 6.5690705966,\n",
" 7.0539539578,\n",
" 7.0703749396,\n",
" 6.9589997893,\n",
" 6.3103384162,\n",
" 5.8878054156,\n",
" 5.8490535722,\n",
" 6.5120382104,\n",
" 7.2428998445,\n",
" 7.7473997842,\n",
" 8.3660042076,\n",
" 8.9783898912,\n",
" 9.5198056427,\n",
" 10.1653697378,\n",
" 10.7658641117,\n",
" 11.1342922574,\n",
" 11.261472425,\n",
" 11.6356287126,\n",
" 11.703002404,\n",
" 11.8928875758,\n",
" 12.0908632938,\n",
" 11.9303466691,\n",
" 10.9006560908,\n",
" 8.7834475579,\n",
" 7.4078894907,\n",
" 6.8629216532,\n",
" 6.807523345,\n",
" 6.8026281789,\n",
" 6.7331235211,\n",
" 6.8736767328,\n",
" 7.4517676509,\n",
" 7.7069332379,\n",
" 7.6848739862,\n",
" 7.5205841155,\n",
" 7.1126970907,\n",
" 6.6384912764,\n",
" 6.063443485,\n",
" 5.7466308558,\n",
" 5.1574590441,\n",
" 4.279330805,\n",
" 3.9327542641,\n",
" 3.6745304868,\n",
" 3.7578658646,\n",
" 3.6597433385,\n",
" 4.3891764802,\n",
" 4.1929715267,\n",
" 3.7407187578,\n",
" 3.3342620003,\n",
" 3.0292346031,\n",
" 3.5634717491,\n",
" 3.9217780909,\n",
" 4.2334908751,\n",
" 4.3851532935,\n",
" 4.6995934748,\n",
" 5.233264533,\n",
" 5.3824246808,\n",
" 5.6817938887,\n",
" 6.0554756038,\n",
" 6.405806565,\n",
" 6.7264687622,\n",
" 7.1459695366,\n",
" 7.670551908,\n",
" 8.1881624376,\n",
" 8.3902160728,\n",
" 8.5912862052,\n",
" 9.0355362323,\n",
" 9.414066687,\n",
" 9.9381707179,\n",
" 10.2294071954,\n",
" 10.4192976118,\n",
" 10.385546872,\n",
" 10.3286649955,\n",
" 10.1709462753,\n",
" 9.8370673343,\n",
" 9.7382665037,\n",
" 8.8723740887,\n",
" 8.7467966503,\n",
" 8.2632839442,\n",
" 7.8413399415,\n",
" 7.3660013485,\n",
" 7.2488755703,\n",
" 7.0466494267,\n",
" 7.1151752462,\n",
" 7.0442675871,\n",
" 7.0854891556,\n",
" 7.0821237644,\n",
" 7.0447647055,\n",
" 7.0802672676,\n",
" 7.0724868094,\n",
" 7.208397359,\n",
" 7.3226057764,\n",
" 7.2146595522,\n",
" 7.2364529111,\n",
" 7.3487677139,\n",
" 7.1552720952,\n",
" 7.1488416926,\n",
" 7.080100071,\n",
" 6.9377126882,\n",
" 6.6444839669,\n",
" 6.4926643489,\n",
" 6.1906554828,\n",
" 5.755730911,\n",
" 5.9229432849,\n",
" 5.8192062699,\n",
" 5.6597190055,\n",
" 5.129877404,\n",
" 4.7152129332,\n",
" 4.7315582902,\n",
" 3.9343452541,\n",
" 1.5056769421,\n",
" 0.3809352794,\n",
" 0.4882816754,\n",
" 0.2286649466,\n",
" 0.073020435,\n",
" 0.7248345228,\n",
" 0.2704062951,\n",
" 0.1080137124,\n",
" 0.5516702646,\n",
" 0.3536365897,\n",
" 1.0330371713,\n",
" 0.5171855685,\n",
" 0.6097366581,\n",
" 0.9345245192,\n",
" 1.2124572295,\n",
" 1.4697231477,\n",
" 1.3298139483,\n",
" 0.9126942197,\n",
" 1.011955317,\n",
" 1.2314145971,\n",
" 0.9308773583,\n",
" 0.7761998982,\n",
" 0.5670091228,\n",
" 0.4752045595,\n",
" 0.7712949779,\n",
" 1.3440149769,\n",
" 1.0666390832,\n",
" 1.2824450571,\n",
" 1.1200134892,\n",
" 0.7340636858,\n",
" 0.7946912913,\n",
" 0.2227151633,\n",
" 0.0546495643,\n",
" 0.7560961598,\n",
" 1.3202855475,\n",
" 1.8139584849,\n",
" 1.7320694789,\n",
" 2.0279312585,\n",
" 2.3894805418,\n",
" 2.8445659001,\n",
" 3.0729353618,\n",
" 3.1826017619,\n",
" 3.4044793883,\n",
" 3.8225054245,\n",
" 3.8212270881,\n",
" 3.9288782522,\n",
" 4.0955153484,\n",
" 4.1751780094,\n",
" 4.3323004548,\n",
" 4.301138751,\n",
" 4.1784380303,\n",
" 4.2511017716,\n",
" 4.1725630542,\n",
" 4.3496210376,\n",
" 4.3008009294,\n",
" 4.3122127946,\n",
" 4.1921295032,\n",
" 4.2437135888,\n",
" 4.3005735397,\n",
" 4.2405932849,\n",
" 4.141693254,\n",
" 4.2233422932,\n",
" 4.5388616423,\n",
" 4.9630638983,\n",
" 4.8182661659,\n",
" 4.5088696735,\n",
" 4.4885897012,\n",
" 4.4919443345,\n",
" 4.4130043575,\n",
" 4.522597327,\n",
" 4.3556717096,\n",
" 4.3529486083,\n",
" 4.2068361888,\n",
" 4.2778778921,\n",
" 4.1906944716,\n",
" 3.9064314535,\n",
" 3.6724445185,\n",
" 2.5564556722,\n",
" 1.2035819018,\n",
" 0.4396195395,\n",
" 0.5036703132,\n",
" 0.7495348995,\n",
" 0.8463514331,\n",
" 0.6653879341,\n",
" 0.4420362301,\n",
" 0.2745364609,\n",
" 0.1071951796,\n",
" 0.2240229211,\n",
" 1.0442550057,\n",
" 1.286153272,\n",
" 1.782219667,\n",
" 2.039533904,\n",
" 2.1403519793,\n",
" 2.6186699233,\n",
" 2.7676434183,\n",
" 2.9278934416,\n",
" 3.1066132538,\n",
" 3.1348322866,\n",
" 3.1609170087,\n",
" 3.3194781184,\n",
" 3.5074088857,\n",
" 3.606040469,\n",
" 3.8069826862,\n",
" 3.8843388668,\n",
" 3.8048601728,\n",
" 3.8083223764,\n",
" 4.0625193076,\n",
" 4.1165430081,\n",
" 4.2183049505,\n",
" 4.1600104054,\n",
" 4.1563118398,\n",
" 4.1678486655,\n",
" 4.286539536,\n",
" 4.3663636865,\n",
" 4.4854404016,\n",
" 4.3186429884,\n",
" 4.2321285331,\n",
" 4.3675505376,\n",
" 4.2844706193,\n",
" 4.4382012018,\n",
" 4.4595898392,\n",
" 4.6079727588,\n",
" 4.7258283444,\n",
" 4.6721492208,\n",
" 4.8123993686,\n",
" 4.7771010758,\n",
" 4.8678361657,\n",
" 4.8389530917,\n",
" 4.7624532707,\n",
" 4.6766486809,\n",
" 4.769461298,\n",
" 4.8867319488,\n",
" 4.6652195347,\n",
" 4.6839410207,\n",
" 4.813921391,\n",
" 4.9409817744,\n",
" 4.9216714444,\n",
" 4.919795446,\n",
" 4.9022637072,\n",
" 4.9427191157,\n",
" 5.0343626862,\n",
" 4.9278616822,\n",
" 4.9670526802,\n",
" 5.0169441594,\n",
" 4.7610028853,\n",
" 4.7504812309,\n",
" 4.8964938553,\n",
" 4.6352059768,\n",
" 4.4037578003,\n",
" 4.4699787157,\n",
" 4.6353984415,\n",
" 4.7255992267,\n",
" 4.8381993873,\n",
" 4.9897890924,\n",
" 4.7616771606,\n",
" 4.952699301,\n",
" 4.7813229086,\n",
" 4.592537155,\n",
" 4.0762581719,\n",
" 3.7455335389,\n",
" 3.6146788382,\n",
" 3.6539700086,\n",
" 4.207208697,\n",
" 4.4744881044,\n",
" 4.4420506683,\n",
" 4.3765903766,\n",
" 4.1815897681,\n",
" 4.6394237325,\n",
" 4.4629182499,\n",
" 4.4712648151,\n",
" 4.531871649,\n",
" 4.7050973953,\n",
" 4.6304994113,\n",
" 4.7267948515,\n",
" 4.5026380235,\n",
" 4.46648314,\n",
" 4.7719243479,\n",
" 4.6185207683,\n",
" 4.6075135792,\n",
" 4.8196620546,\n",
" 4.8139478395,\n",
" 4.7175819886,\n",
" 4.6800353821,\n",
" 4.4484473456,\n",
" 4.3783025925,\n",
" 4.5849469221,\n",
" 4.6028916399,\n",
" 4.7605953582,\n",
" 4.9463446853,\n",
" 4.8488926835,\n",
" 4.666524374,\n",
" 4.5612642541,\n",
" 4.3928115445,\n",
" 4.2155676681,\n",
" 4.1655722187,\n",
" 4.0527570114,\n",
" 4.6830156205,\n",
" 4.4593120176,\n",
" 4.2908724071,\n",
" 4.1627399291,\n",
" 4.1171544084,\n",
" 3.9213033892,\n",
" 3.6054030663,\n",
" 3.577551865,\n",
" 3.4188665316,\n",
" 3.4013089657,\n",
" 3.3124917269,\n",
" 3.1655126507,\n",
" 3.1240323586,\n",
" 3.0526881543,\n",
" 2.958738892,\n",
" 2.7207131477,\n",
" 2.6996272474,\n",
" 2.5608401047,\n",
" 2.5910570093,\n",
" 2.5313942548,\n",
" 2.4590912427,\n",
" 2.331764026,\n",
" 2.3797868387,\n",
" 2.4611689266,\n",
" 2.5789876434,\n",
" 2.7757204822,\n",
" 2.7337320789,\n",
" 2.6212014723,\n",
" 2.3775273905,\n",
" 2.5106990175,\n",
" 2.9094837542,\n",
" 2.6557352125,\n",
" 2.5778878399,\n",
" 2.6811095868,\n",
" 2.6011116974,\n",
" 2.5482183663,\n",
" 2.5531540364,\n",
" 2.2724815059,\n",
" 2.1593613413,\n",
" 2.2947067062,\n",
" 2.3896060656,\n",
" 2.2981782202,\n",
" 2.3512232559,\n",
" 2.1462430936,\n",
" 2.2745480452,\n",
" 2.2062231702,\n",
" 2.0945457293,\n",
" 1.8615990465,\n",
" 1.9718142873,\n",
" 2.0494563308,\n",
" 2.0261016441,\n",
" 1.9022688375,\n",
" 1.9345650862,\n",
" 1.9399683201,\n",
" 1.8398056306,\n",
" 1.901870069,\n",
" 2.2125939147,\n",
" 2.1658018185,\n",
" 2.3529908034,\n",
" 2.3119568442,\n",
" 2.4475239606,\n",
" 2.4074451802,\n",
" 2.1875018587,\n",
" 2.2368082165,\n",
" 2.4252272097,\n",
" 2.2069320303,\n",
" 2.2160070983,\n",
" 2.2967367903,\n",
" 2.5677046018,\n",
" 2.5796320097,\n",
" 2.4173341374,\n",
" 2.1204876842,\n",
" 2.1917059662,\n",
" 2.5626811291,\n",
" 2.8194815923,\n",
" 2.7688609303,\n",
" 2.8681649979,\n",
" 3.0220461439,\n",
" 3.216452886,\n",
" 3.2457781002,\n",
" 3.5285070808,\n",
" 3.911131888,\n",
" 3.924359308,\n",
" 4.177915435,\n",
" 4.3060258418,\n",
" 4.6245980628,\n",
" 4.6471439427,\n",
" 4.4795803661,\n",
" 4.2817644887,\n",
" 4.4465506714,\n",
" 4.566946844,\n",
" 4.6999674017,\n",
" 4.7117733381,\n",
" 4.7534466732,\n",
" 4.750464832,\n",
" 4.6663789431,\n",
" 4.6100030973,\n",
" 4.451256743,\n",
" 4.5970446937,\n",
" 4.2362521486,\n",
" 3.9839303745,\n",
" 4.1669240158,\n",
" 4.194512515,\n",
" 3.9213923218,\n",
" 4.1952230829,\n",
" 4.3817971578,\n",
" 4.534044687,\n",
" 4.1334680191,\n",
" 4.003702276,\n",
" 4.1098231587,\n",
" 4.346227448,\n",
" 4.403615487,\n",
" 4.3987114301,\n",
" 4.5263300313,\n",
" 4.7097976196,\n",
" 4.7937203704,\n",
" 4.6777208039,\n",
" 4.6730935262,\n",
" 4.738864716,\n",
" 4.809519094,\n",
" 4.7225635086,\n",
" 4.768470489,\n",
" 4.7110577075,\n",
" 4.7132779586,\n",
" 4.7143845758,\n",
" 4.6158323071,\n",
" 4.5787403557,\n",
" 4.6511512529,\n",
" 4.51603074,\n",
" 4.3434102691,\n",
" 4.3355848817,\n",
" 4.2516412889,\n",
" 4.1369668978,\n",
" 4.2413216856,\n",
" 4.4023192669,\n",
" 4.4404338779,\n",
" 4.5738328074,\n",
" 4.6959257434,\n",
" 4.6030042113,\n",
" 4.5388886759,\n",
" 4.6242860363,\n",
" 4.6269387858,\n",
" 4.7726151539,\n",
" 4.7697415988,\n",
" 4.6306168083,\n",
" 4.468846693,\n",
" 4.4262574215,\n",
" 4.2150286848,\n",
" 4.1499626226,\n",
" 4.0140550769,\n",
" 4.0105777205,\n",
" 4.150827753,\n",
" 4.0972735017,\n",
" 3.7426329954,\n",
" 3.4876272442,\n",
" 3.4311262673,\n",
" 3.4245715743,\n",
" 3.5651979701,\n",
" 3.721787149,\n",
" 3.8002091152,\n",
" 3.7484052605,\n",
" 4.0181636776,\n",
" 4.2788603624,\n",
" 4.6015268645,\n",
" 4.7039801226,\n",
" 4.6349840734,\n",
" 4.2392046849,\n",
" 4.0446673527,\n",
" 3.9406313687,\n",
" 3.9268274356,\n",
" 4.1243594607,\n",
" 4.2250057038,\n",
" 4.0384107931,\n",
" 3.8510824359,\n",
" 3.879216259,\n",
" 3.7210642901,\n",
" 3.4697687968,\n",
" 3.9635916721,\n",
" 4.050512505,\n",
" 3.8944445949,\n",
" 3.5800115055,\n",
" 3.2828541948,\n",
" 2.6580306447,\n",
" 2.1877236047,\n",
" 2.0066632719,\n",
" 2.410159962,\n",
" 2.1810261259,\n",
" 2.2785406316,\n",
" 2.0540423632,\n",
" 2.0213343259,\n",
" 1.4038619748,\n",
" 1.541052329,\n",
" 1.8208999213,\n",
" 1.8152184108,\n",
" 1.923077789,\n",
" 1.7154411868,\n",
" 1.9493921196,\n",
" 1.7960403462,\n",
" 1.7194095164,\n",
" 1.5895932648,\n",
" 2.0435393975,\n",
" 1.8430175324,\n",
" 1.7007242942,\n",
" 1.8992031838,\n",
" 1.7783956816,\n",
" 1.7904530439,\n",
" 1.7298730673,\n",
" 1.6120660458,\n",
" 1.6480559173,\n",
" 1.8062385348,\n",
" 2.3364593234,\n",
" 2.212194639,\n",
" 2.1239963108,\n",
" 2.0527522088,\n",
" 1.8184448265,\n",
" 1.6561303599,\n",
" 1.6459290669,\n",
" 1.8362376106,\n",
" 2.1161550957,\n",
" 2.2162486337,\n",
" 1.8575119293,\n",
" 1.8457688676,\n",
" 1.8392417824,\n",
" 1.4556786167,\n",
" 0.9591748136,\n",
" 0.5707532515,\n",
" 0.8334516535,\n",
" 0.543611263,\n",
" 0.859760626,\n",
" 0.5102020986,\n",
" 0.6864081027,\n",
" 0.8215678018,\n",
" 0.5729093204,\n",
" 0.4874233188,\n",
" 0.7985766758,\n",
" 0.8103951603,\n",
" 0.7439626336,\n",
" 0.8172762287,\n",
" 0.7618868442,\n",
" 0.6378982035,\n",
" 0.8658461254,\n",
" 1.2907448221,\n",
" 1.0431238074,\n",
" 0.8294843721,\n",
" 0.783064893,\n",
" 0.9068734968,\n",
" 1.1664668159,\n",
" 1.1591889873,\n",
" 0.9135470819,\n",
" 0.8178629342,\n",
" 1.5382935199,\n",
" 1.5755928868,\n",
" 0.9183436727,\n",
" 0.3266069102,\n",
" 0.6590880746,\n",
" 0.5809703879,\n",
" 0.2922910371,\n",
" 0.1398037662,\n",
" 0.0710448917,\n",
" 0.1121164592,\n",
" 0.8597455333,\n",
" 0.0935304703,\n",
" 0.0093202511,\n",
" 0.0961296211,\n",
" 0.0555667949,\n",
" 0.2249146635,\n",
" 0.3323950618,\n",
" 0.0961138672,\n",
" 0.3972813462,\n",
" 0.1142804755,\n",
" 0.113884302,\n",
" 0.2312292305,\n",
" 0.2518325895,\n",
" 0.6366554304,\n",
" 0.6848640395,\n",
" 0.4805693326,\n",
" 0.3796419725,\n",
" 0.65231677,\n",
" 0.660733224,\n",
" 1.0249094084,\n",
" 1.3632252121,\n",
" 1.8167161216,\n",
" 1.7671599362,\n",
" 1.6257908444,\n",
" 1.7270459074,\n",
" 1.637771258,\n",
" 1.6969059202,\n",
" 1.5382623612,\n",
" 1.5440162342,\n",
" 1.4879249234,\n",
" 1.5457048962,\n",
" 1.7584482351,\n",
" 1.7277093465,\n",
" 1.8906518439,\n",
" 1.6913928348,\n",
" 1.8165662008,\n",
" 1.536450137,\n",
" 1.7031923537,\n",
" 1.5892193971,\n",
" 1.7701690942,\n",
" 1.7842493858,\n",
" 1.5600919035,\n",
" 2.0977859943,\n",
" 2.2020179257,\n",
" 2.3165623711,\n",
" 2.0748243545,\n",
" 1.9256748931,\n",
" 2.0035822402,\n",
" 1.6084441391,\n",
" 0.8643771896,\n",
" 0.5412556542,\n",
" 0.6260879852,\n",
" 0.9525864207,\n",
" 0.7797573574,\n",
" 1.2703918796,\n",
" 1.0445962396,\n",
" 0.7107537671,\n",
" 0.5515203799,\n",
" 0.5333088968,\n",
" 0.2813881744,\n",
" 0.2331376547,\n",
" 0.7496529197,\n",
" 0.2871095149,\n",
" 0.1318557761,\n",
" 0.4981512034,\n",
" 0.5328982621,\n",
" 0.6007054565,\n",
" 0.1541719674,\n",
" 0.1381611355,\n",
" 0.2868027113,\n",
" 0.9055762211,\n",
" 0.8534548118,\n",
" 1.1762077634,\n",
" 1.7716154338,\n",
" 1.8713615973,\n",
" 1.9427403541,\n",
" 1.9721108974,\n",
" 1.4733589267,\n",
" 2.1096167849,\n",
" 1.7661886058,\n",
" 1.9867893041,\n",
" 1.4204416547,\n",
" 1.8230749213,\n",
" 2.3414184344,\n",
" 1.6064250406,\n",
" 1.5939566193,\n",
" 2.5887872797,\n",
" 2.1771470525,\n",
" 2.1150622195,\n",
" 2.2786824189,\n",
" 2.3868411418,\n",
" 2.0529575124,\n",
" 2.0718988094,\n",
" 2.0611106157,\n",
" 2.0743635598,\n",
" 2.0979343909,\n",
" 1.7234621366,\n",
" 1.7102884494,\n",
" 1.743406583,\n",
" 1.9211082238,\n",
" 2.252534292,\n",
" 2.2616208901,\n",
" 2.2853506652,\n",
" 2.5665159108,\n",
" 2.4823520901,\n",
" 2.5149421718,\n",
" 2.5119899719,\n",
" 2.623020315,\n",
" 2.497443243,\n",
" 2.6914040246,\n",
" 2.3635711869,\n",
" 2.2749743563,\n",
" 2.2136601776,\n",
" 2.0212411839,\n",
" 1.4762717416,\n",
" 0.6856531779,\n",
" 0.2093383151,\n",
" 0.1442379894,\n",
" 1.7450114732,\n",
" 0.7682566667,\n",
" 1.1656882702,\n",
" 0.7848152048,\n",
" 0.9476994424,\n",
" 0.5746683621,\n",
" 0.5486786406,\n",
" 0.3596601974,\n",
" 0.9971845363,\n",
" 0.6970294299,\n",
" 0.6740556375,\n",
" 0.7763381296,\n",
" 0.8225753714,\n",
" 0.7335473525,\n",
" 0.834187198,\n",
" 1.0607977322,\n",
" 0.9952625822,\n",
" 1.5096392778,\n",
" 0.738357972,\n",
" 0.9390988727,\n",
" 1.0826977157,\n",
" 1.35086375,\n",
" 1.3609907225,\n",
" 1.6243481414,\n",
" 1.3321920365,\n",
" 1.1452722766,\n",
" 0.855900788,\n",
" 1.0585506962,\n",
" 0.9596696312,\n",
" 1.1149753511,\n",
" 0.9345927752,\n",
" 1.3543449221,\n",
" 1.1706642007,\n",
" 1.0427881569,\n",
" 1.0856583455,\n",
" 1.0606860722,\n",
" 1.0372040326,\n",
" 1.2493678717,\n",
" 0.9705167649,\n",
" 1.1942577146,\n",
" 0.9703927025,\n",
" 0.9069981447,\n",
" 1.0724732061,\n",
" 0.9813951719,\n",
" 1.1772870818,\n",
" 1.2374729251,\n",
" 1.4064481727,\n",
" 1.4432164682,\n",
" 1.2434603548,\n",
" 1.4325063652,\n",
" 2.0463007777,\n",
" 1.4658995289,\n",
" 1.6340160765,\n",
" 1.1153536633,\n",
" 0.8515454676,\n",
" 0.5000878694,\n",
" 0.4376151024,\n",
" 0.3529280666,\n",
" 0.2299845156,\n",
" 0.0905089346,\n",
" 0.2112915091,\n",
" 0.1208556153,\n",
" 0.1639452839,\n",
" 0.1306421163,\n",
" 0.0693372098,\n",
" 0.1987857766,\n",
" 0.1521511329,\n",
" 0.3671435226,\n",
" 0.048091672,\n",
" 0.0402227831,\n",
" 0.0364322867,\n",
" 0.0505184668,\n",
" 0.0469536704,\n",
" 0.251753274,\n",
" 0.4090441324,\n",
" 0.2749417099,\n",
" 0.696942207,\n",
" 1.0776787386,\n",
" 0.8319849953,\n",
" 1.3060155577,\n",
" 1.4448642377,\n",
" 0.926932268,\n",
" 0.8332122492,\n",
" 0.4414636437,\n",
" 0.1212992408,\n",
" 0.3736129702,\n",
" 0.2012784848,\n",
" 0.0505184552,\n",
" 0.7698881922,\n",
" 0.9556017117,\n",
" 1.6747063691,\n",
" 1.5625473125,\n",
" 2.3476429077,\n",
" 1.9595967949,\n",
" 2.0348507204,\n",
" 2.0297940179,\n",
" 2.2731995878,\n",
" 2.8433399586,\n",
" 3.6671256126,\n",
" 4.1531086989,\n",
" 4.3510462046,\n",
" 4.4823088222,\n",
" 4.4100935554,\n",
" 4.837356815,\n",
" 4.7049164792,\n",
" 4.7892953425,\n",
" 4.9331610791,\n",
" 5.2494297689,\n",
" 5.7059984338,\n",
" 6.0630128394,\n",
" 6.592504377,\n",
" 6.5602164161,\n",
" 6.9093034061,\n",
" 7.0322462107,\n",
" 6.8365785793,\n",
" 7.0203273823,\n",
" 6.7675455304,\n",
" 6.962014036,\n",
" 6.7257185676,\n",
" 6.4261281886,\n",
" 5.2765700653,\n",
" 4.4498365272,\n",
" 4.2593448243,\n",
" 5.217586204,\n",
" 4.546767499,\n",
" 3.0467568029,\n",
" 1.6250688175,\n",
" 0.8947742127,\n",
" 0.3760927218,\n",
" 0.5032519481,\n",
" 0.6359562407,\n",
" 1.017214055,\n",
" 1.0727600022,\n",
" 1.237012259,\n",
" 1.1646935015,\n",
" 1.5971095202,\n",
" 1.5104625353,\n",
" 1.6130503959,\n",
" 1.5586673375,\n",
" 1.2666658874,\n",
" 1.087980946,\n",
" 1.1628228467,\n",
" 1.0689263573,\n",
" 0.7648106414,\n",
" 0.4124080591,\n",
" 0.3478107607,\n",
" 0.8650040111,\n",
" 1.4135574757,\n",
" 1.5842726945,\n",
" 1.7218172685,\n",
" 1.6977930227,\n",
" 1.7437569615,\n",
" 1.8704145126,\n",
" 1.8496177554,\n",
" 1.7666251143,\n",
" 1.9702617545,\n",
" 1.838747004,\n",
" 1.7067534034,\n",
" 2.0272368155,\n",
" 2.5774396142,\n",
" 1.9057024976,\n",
" 2.2179005818,\n",
" 2.2049064455,\n",
" 1.7655937229,\n",
" 1.511856795,\n",
" 2.0933132637,\n",
" ...]"
]
},
"execution_count": 167,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Task 7 and 8\n",
"dis = []\n",
"radius = 6371000\n",
"x_c = df['lat'].values\n",
"y_c = df['lon'].values\n",
"for i in range(len(num)):\n",
" x = math.radians(x_c[i]- x_c[i-1])\n",
" y = math.radians(y_c[i]- y_c[i-1])\n",
" a = math.sin(x/2) * math.sin(x/2) + math.cos(math.radians(x_c[i-1])) \\\n",
" * math.cos(math.radians(x_c[i])) * math.sin(y/2) * math.sin(y/2)\n",
" c = 2 * math.atan2(math.sqrt(a), math.sqrt(1-a))\n",
" d = radius * c\n",
" dis.append(round(d,10))\n",
"dis"
]
},
{
"cell_type": "code",
"execution_count": 166,
"id": "e8425d52",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[-3.7786272890435835e-13,\n",
" 5.753658472999999e-10,\n",
" 1.6189971940000002e-09,\n",
" 1.9522775823e-09,\n",
" 2.7531816433e-09,\n",
" 1.9132806026e-09,\n",
" 2.4226023495e-09,\n",
" 2.1360727964e-09,\n",
" 1.0859252039e-09,\n",
" 1.0045518841e-09,\n",
" 8.068771528000001e-10,\n",
" 9.166034423e-10,\n",
" 1.08109636e-09,\n",
" 8.558737941e-10,\n",
" 4.3618685959999995e-10,\n",
" 2.571625595e-10,\n",
" 3.519683757e-10,\n",
" 2.103530944e-10,\n",
" 2.90352714e-11,\n",
" 3.5672631649999996e-10,\n",
" 2.4601540099999997e-10,\n",
" 1.2817343049999998e-10,\n",
" 2.424528604e-10,\n",
" 2.172864511e-10,\n",
" 1.483728133e-10,\n",
" 3.0577517469999996e-10,\n",
" 8.04474624e-11,\n",
" 8.710581370000001e-11,\n",
" 1.493292195e-10,\n",
" 7.19207644e-11,\n",
" 7.8258068e-12,\n",
" 1.521521373e-10,\n",
" 6.15038454e-11,\n",
" 1.184902561e-10,\n",
" 2.483390336e-10,\n",
" 3.504862345e-10,\n",
" 3.597313989e-10,\n",
" 3.416427707e-10,\n",
" 4.6292198839999996e-10,\n",
" 2.0513600630000001e-10,\n",
" 4.022372408e-10,\n",
" 2.542479732e-10,\n",
" 1.7380493050000002e-10,\n",
" 7.285718989999999e-11,\n",
" 8.31031101e-11,\n",
" 1.206711684e-10,\n",
" 1.3906552499999999e-10,\n",
" 1.7836311469999998e-10,\n",
" 2.17088479e-10,\n",
" 4.19725544e-11,\n",
" 2.73959228e-10,\n",
" 1.775768147e-10,\n",
" 1.13885574e-10,\n",
" 2.02166157e-11,\n",
" 1.589940127e-10,\n",
" 2.15762271e-10,\n",
" 1.742231987e-10,\n",
" 3.862857321e-10,\n",
" 1.01735468e-10,\n",
" 4.86802313e-11,\n",
" 9.5741804e-11,\n",
" 1.2170057800000001e-10,\n",
" 6.150383570000001e-11,\n",
" 1.0256799950000001e-10,\n",
" 1.21700578e-11,\n",
" 4.02237215e-11,\n",
" 9.3202511e-12,\n",
" 7.57793187e-11,\n",
" 1.379851674e-10,\n",
" 1.201942773e-10,\n",
" 5.47806378e-11,\n",
" 1.0466995869999999e-10,\n",
" 2.9977614999999996e-11,\n",
" 1.82164762e-11,\n",
" 6.82517082e-11,\n",
" 3.1303221999999997e-11,\n",
" 7.82823943e-11,\n",
" 5.55678456e-11,\n",
" 6.61546172e-11,\n",
" 5.99552305e-11,\n",
" 7.96904959e-11,\n",
" 1.01083079e-10,\n",
" 6.06498474e-11,\n",
" 1.127637933e-10,\n",
" 5.21810895e-11,\n",
" 1.143482072e-10,\n",
" 3.7281004299999994e-11,\n",
" 1.3433823989999998e-10,\n",
" 1.420924908e-10,\n",
" 2.160270176e-10,\n",
" 2.67207369e-10,\n",
" 2.0933991960000002e-10,\n",
" 1.653956924e-10,\n",
" 4.8092458999999997e-11,\n",
" 1.722672774e-10,\n",
" 1.86405022e-11,\n",
" 2.0538312880000002e-10,\n",
" 9.05109663e-11,\n",
" 1.493292194e-10,\n",
" 5.449799046e-10,\n",
" 1.037106054e-10,\n",
" 1.307179826e-10,\n",
" 5.779051516e-10,\n",
" 6.06498487e-11,\n",
" 3.8093524099999997e-11,\n",
" 6.06498477e-11,\n",
" 2.02166163e-11,\n",
" 9.255979050000001e-11,\n",
" 8.44534225e-11,\n",
" 1.56516139e-11,\n",
" 6.93374085e-11,\n",
" 4.33422392e-11,\n",
" 4.86802359e-11,\n",
" 8.04474605e-11,\n",
" 1.2170059e-11,\n",
" 1.86405022e-11,\n",
" 2.52597779e-11,\n",
" 6.32964093e-11,\n",
" 7.82580702e-11,\n",
" 4.86802359e-11,\n",
" 4.80924641e-11,\n",
" 1.221700028e-10,\n",
" 8.04474611e-11,\n",
" 2.249147109e-10,\n",
" 2.745368004e-10,\n",
" 7.522019019e-10,\n",
" 1.1283028475e-09,\n",
" 8.980134877e-10,\n",
" 1.6727492758e-09,\n",
" 1.4494786303e-09,\n",
" 1.1457503285999998e-09,\n",
" 1.2231954578e-09,\n",
" 2.2121717137e-09,\n",
" 8.634074438e-10,\n",
" 1.5820815321e-09,\n",
" 2.5836589792e-09,\n",
" 2.6662332137e-09,\n",
" 3.0623073517e-09,\n",
" 3.5460934314e-09,\n",
" 3.6099140008e-09,\n",
" 3.3343023785e-09,\n",
" 3.3438694821e-09,\n",
" 3.6222857458e-09,\n",
" 3.9740902948e-09,\n",
" 4.1589615670000004e-09,\n",
" 4.9797910784e-09,\n",
" 5.15060335e-09,\n",
" 5.3442999312e-09,\n",
" 5.4013958684e-09,\n",
" 5.839158006e-09,\n",
" 6.111946396499999e-09,\n",
" 6.5690705966e-09,\n",
" 7.0539539578e-09,\n",
" 7.0703749396e-09,\n",
" 6.9589997893e-09,\n",
" 6.310338416199999e-09,\n",
" 5.8878054156e-09,\n",
" 5.8490535721999995e-09,\n",
" 6.5120382104e-09,\n",
" 7.2428998445e-09,\n",
" 7.7473997842e-09,\n",
" 8.3660042076e-09,\n",
" 8.9783898912e-09,\n",
" 9.519805642699999e-09,\n",
" 1.01653697378e-08,\n",
" 1.07658641117e-08,\n",
" 1.1134292257400001e-08,\n",
" 1.1261472425e-08,\n",
" 1.16356287126e-08,\n",
" 1.1703002403999999e-08,\n",
" 1.1892887575799999e-08,\n",
" 1.20908632938e-08,\n",
" 1.1930346669100001e-08,\n",
" 1.09006560908e-08,\n",
" 8.783447557900001e-09,\n",
" 7.4078894907e-09,\n",
" 6.8629216532e-09,\n",
" 6.807523345e-09,\n",
" 6.8026281789e-09,\n",
" 6.7331235211e-09,\n",
" 6.8736767328e-09,\n",
" 7.4517676509e-09,\n",
" 7.7069332379e-09,\n",
" 7.6848739862e-09,\n",
" 7.5205841155e-09,\n",
" 7.1126970907e-09,\n",
" 6.6384912764e-09,\n",
" 6.063443485e-09,\n",
" 5.7466308558e-09,\n",
" 5.1574590441000005e-09,\n",
" 4.279330805e-09,\n",
" 3.9327542641000006e-09,\n",
" 3.6745304868e-09,\n",
" 3.7578658646e-09,\n",
" 3.6597433385e-09,\n",
" 4.3891764802e-09,\n",
" 4.1929715267000004e-09,\n",
" 3.7407187577999996e-09,\n",
" 3.3342620003e-09,\n",
" 3.0292346031e-09,\n",
" 3.5634717491000002e-09,\n",
" 3.9217780909e-09,\n",
" 4.2334908751e-09,\n",
" 4.3851532935e-09,\n",
" 4.699593474800001e-09,\n",
" 5.2332645329999995e-09,\n",
" 5.3824246808e-09,\n",
" 5.6817938886999995e-09,\n",
" 6.0554756038e-09,\n",
" 6.405806565e-09,\n",
" 6.7264687622e-09,\n",
" 7.1459695366e-09,\n",
" 7.670551908e-09,\n",
" 8.1881624376e-09,\n",
" 8.390216072799999e-09,\n",
" 8.591286205199999e-09,\n",
" 9.0355362323e-09,\n",
" 9.414066687e-09,\n",
" 9.9381707179e-09,\n",
" 1.02294071954e-08,\n",
" 1.0419297611799999e-08,\n",
" 1.0385546872000001e-08,\n",
" 1.03286649955e-08,\n",
" 1.01709462753e-08,\n",
" 9.837067334300001e-09,\n",
" 9.7382665037e-09,\n",
" 8.872374088700002e-09,\n",
" 8.7467966503e-09,\n",
" 8.2632839442e-09,\n",
" 7.8413399415e-09,\n",
" 7.366001348500001e-09,\n",
" 7.2488755703e-09,\n",
" 7.0466494267e-09,\n",
" 7.1151752462e-09,\n",
" 7.0442675871e-09,\n",
" 7.0854891556e-09,\n",
" 7.0821237644e-09,\n",
" 7.0447647055e-09,\n",
" 7.0802672676e-09,\n",
" 7.0724868094e-09,\n",
" 7.208397359e-09,\n",
" 7.3226057764e-09,\n",
" 7.2146595522e-09,\n",
" 7.236452911099999e-09,\n",
" 7.3487677139e-09,\n",
" 7.1552720952e-09,\n",
" 7.148841692599999e-09,\n",
" 7.080100071000001e-09,\n",
" 6.937712688200001e-09,\n",
" 6.6444839669e-09,\n",
" 6.4926643489e-09,\n",
" 6.1906554828e-09,\n",
" 5.755730911e-09,\n",
" 5.9229432848999995e-09,\n",
" 5.8192062699e-09,\n",
" 5.6597190055000005e-09,\n",
" 5.129877404e-09,\n",
" 4.7152129332e-09,\n",
" 4.7315582902e-09,\n",
" 3.9343452541e-09,\n",
" 1.5056769421e-09,\n",
" 3.809352794e-10,\n",
" 4.882816754e-10,\n",
" 2.286649466e-10,\n",
" 7.3020435e-11,\n",
" 7.248345228e-10,\n",
" 2.704062951e-10,\n",
" 1.0801371240000001e-10,\n",
" 5.516702646e-10,\n",
" 3.536365897e-10,\n",
" 1.0330371713e-09,\n",
" 5.171855684999999e-10,\n",
" 6.097366581e-10,\n",
" 9.345245192e-10,\n",
" 1.2124572295e-09,\n",
" 1.4697231476999998e-09,\n",
" 1.3298139483e-09,\n",
" 9.126942197e-10,\n",
" 1.0119553169999999e-09,\n",
" 1.2314145971e-09,\n",
" 9.308773582999999e-10,\n",
" 7.761998982e-10,\n",
" 5.670091228000001e-10,\n",
" 4.752045595e-10,\n",
" 7.712949779e-10,\n",
" 1.3440149769e-09,\n",
" 1.0666390831999999e-09,\n",
" 1.2824450570999999e-09,\n",
" 1.1200134892e-09,\n",
" 7.340636858e-10,\n",
" 7.946912913000001e-10,\n",
" 2.227151633e-10,\n",
" 5.4649564300000004e-11,\n",
" 7.560961598e-10,\n",
" 1.3202855474999999e-09,\n",
" 1.8139584848999998e-09,\n",
" 1.7320694788999999e-09,\n",
" 2.0279312584999996e-09,\n",
" 2.3894805418e-09,\n",
" 2.8445659001e-09,\n",
" 3.0729353618e-09,\n",
" 3.1826017619e-09,\n",
" 3.4044793883e-09,\n",
" 3.8225054245e-09,\n",
" 3.8212270881e-09,\n",
" 3.9288782522e-09,\n",
" 4.0955153484e-09,\n",
" 4.1751780094e-09,\n",
" 4.3323004548e-09,\n",
" 4.301138751e-09,\n",
" 4.1784380303e-09,\n",
" 4.2511017716e-09,\n",
" 4.1725630542000005e-09,\n",
" 4.3496210376e-09,\n",
" 4.3008009294e-09,\n",
" 4.3122127945999995e-09,\n",
" 4.192129503200001e-09,\n",
" 4.2437135888000005e-09,\n",
" 4.3005735397000004e-09,\n",
" 4.2405932849e-09,\n",
" 4.1416932539999996e-09,\n",
" 4.2233422932e-09,\n",
" 4.5388616423e-09,\n",
" 4.9630638983e-09,\n",
" 4.8182661659e-09,\n",
" 4.508869673499999e-09,\n",
" 4.4885897012e-09,\n",
" 4.4919443345000004e-09,\n",
" 4.4130043575e-09,\n",
" 4.522597327e-09,\n",
" 4.3556717096e-09,\n",
" 4.3529486083e-09,\n",
" 4.206836188799999e-09,\n",
" 4.2778778921e-09,\n",
" 4.1906944716e-09,\n",
" 3.9064314535e-09,\n",
" 3.6724445185e-09,\n",
" 2.5564556721999998e-09,\n",
" 1.2035819018e-09,\n",
" 4.3961953949999997e-10,\n",
" 5.036703132e-10,\n",
" 7.495348994999999e-10,\n",
" 8.463514331e-10,\n",
" 6.653879341e-10,\n",
" 4.420362301e-10,\n",
" 2.745364609e-10,\n",
" 1.071951796e-10,\n",
" 2.240229211e-10,\n",
" 1.0442550057e-09,\n",
" 1.286153272e-09,\n",
" 1.7822196669999998e-09,\n",
" 2.0395339039999997e-09,\n",
" 2.1403519793e-09,\n",
" 2.6186699233000003e-09,\n",
" 2.7676434183e-09,\n",
" 2.9278934416e-09,\n",
" 3.1066132538e-09,\n",
" 3.1348322866e-09,\n",
" 3.1609170086999996e-09,\n",
" 3.3194781184000004e-09,\n",
" 3.5074088857e-09,\n",
" 3.6060404689999998e-09,\n",
" 3.8069826862e-09,\n",
" 3.8843388668e-09,\n",
" 3.8048601728e-09,\n",
" 3.8083223764e-09,\n",
" 4.062519307599999e-09,\n",
" 4.1165430080999995e-09,\n",
" 4.218304950500001e-09,\n",
" 4.1600104054e-09,\n",
" 4.1563118398e-09,\n",
" 4.1678486655e-09,\n",
" 4.286539536000001e-09,\n",
" 4.3663636865e-09,\n",
" 4.4854404016e-09,\n",
" 4.3186429884e-09,\n",
" 4.2321285331e-09,\n",
" 4.3675505376e-09,\n",
" 4.2844706193000005e-09,\n",
" 4.4382012018e-09,\n",
" 4.4595898392000006e-09,\n",
" 4.6079727588e-09,\n",
" 4.7258283444e-09,\n",
" 4.6721492208e-09,\n",
" 4.8123993686e-09,\n",
" 4.7771010758e-09,\n",
" 4.8678361657e-09,\n",
" 4.8389530917e-09,\n",
" 4.7624532707e-09,\n",
" 4.676648680899999e-09,\n",
" 4.769461298000001e-09,\n",
" 4.8867319488e-09,\n",
" 4.6652195347000005e-09,\n",
" 4.6839410207e-09,\n",
" 4.813921391e-09,\n",
" 4.9409817744e-09,\n",
" 4.9216714444e-09,\n",
" 4.919795446e-09,\n",
" 4.9022637072000004e-09,\n",
" 4.9427191157e-09,\n",
" 5.0343626862e-09,\n",
" 4.9278616822e-09,\n",
" 4.9670526802e-09,\n",
" 5.0169441594e-09,\n",
" 4.7610028853e-09,\n",
" 4.7504812309e-09,\n",
" 4.8964938553e-09,\n",
" 4.6352059768e-09,\n",
" 4.4037578003e-09,\n",
" 4.4699787157e-09,\n",
" 4.6353984415e-09,\n",
" 4.7255992267e-09,\n",
" 4.838199387300001e-09,\n",
" 4.9897890923999995e-09,\n",
" 4.7616771606e-09,\n",
" 4.952699301e-09,\n",
" 4.7813229086e-09,\n",
" 4.592537155e-09,\n",
" 4.0762581719000004e-09,\n",
" 3.7455335389e-09,\n",
" 3.6146788382e-09,\n",
" 3.6539700086e-09,\n",
" 4.207208697000001e-09,\n",
" 4.4744881044e-09,\n",
" 4.4420506683e-09,\n",
" 4.3765903766e-09,\n",
" 4.1815897681e-09,\n",
" 4.6394237325e-09,\n",
" 4.4629182499e-09,\n",
" 4.471264815099999e-09,\n",
" 4.531871649e-09,\n",
" 4.7050973953000005e-09,\n",
" 4.6304994113e-09,\n",
" 4.7267948515e-09,\n",
" 4.5026380235000005e-09,\n",
" 4.46648314e-09,\n",
" 4.7719243479e-09,\n",
" 4.6185207683e-09,\n",
" 4.6075135792e-09,\n",
" 4.8196620546e-09,\n",
" 4.8139478395e-09,\n",
" 4.7175819886e-09,\n",
" 4.680035382099999e-09,\n",
" 4.4484473456e-09,\n",
" 4.3783025925e-09,\n",
" 4.5849469221e-09,\n",
" 4.6028916399e-09,\n",
" 4.7605953582e-09,\n",
" 4.9463446852999996e-09,\n",
" 4.8488926835e-09,\n",
" 4.666524374e-09,\n",
" 4.5612642541e-09,\n",
" 4.3928115444999995e-09,\n",
" 4.2155676681e-09,\n",
" 4.1655722187e-09,\n",
" 4.0527570114e-09,\n",
" 4.6830156205e-09,\n",
" 4.4593120176e-09,\n",
" 4.2908724071e-09,\n",
" 4.1627399291e-09,\n",
" 4.1171544084e-09,\n",
" 3.9213033892e-09,\n",
" 3.6054030663000002e-09,\n",
" 3.5775518650000003e-09,\n",
" 3.4188665316e-09,\n",
" 3.4013089657000003e-09,\n",
" 3.3124917268999997e-09,\n",
" 3.1655126507e-09,\n",
" 3.1240323586e-09,\n",
" 3.0526881543000004e-09,\n",
" 2.9587388919999998e-09,\n",
" 2.7207131477000003e-09,\n",
" 2.6996272474e-09,\n",
" 2.5608401047e-09,\n",
" 2.5910570093e-09,\n",
" 2.5313942548e-09,\n",
" 2.4590912427e-09,\n",
" 2.331764026e-09,\n",
" 2.3797868386999997e-09,\n",
" 2.4611689266e-09,\n",
" 2.5789876434e-09,\n",
" 2.7757204822000002e-09,\n",
" 2.7337320789000003e-09,\n",
" 2.6212014723000002e-09,\n",
" 2.3775273905e-09,\n",
" 2.5106990175e-09,\n",
" 2.9094837542e-09,\n",
" 2.6557352125e-09,\n",
" 2.5778878398999996e-09,\n",
" 2.6811095867999998e-09,\n",
" 2.6011116973999997e-09,\n",
" 2.5482183663e-09,\n",
" 2.5531540364e-09,\n",
" 2.2724815059e-09,\n",
" 2.1593613413e-09,\n",
" 2.2947067062e-09,\n",
" 2.3896060656e-09,\n",
" 2.2981782202000002e-09,\n",
" 2.3512232559e-09,\n",
" 2.1462430935999998e-09,\n",
" 2.2745480452e-09,\n",
" 2.2062231702e-09,\n",
" 2.0945457293000002e-09,\n",
" 1.8615990465e-09,\n",
" 1.9718142873e-09,\n",
" 2.0494563308e-09,\n",
" 2.0261016441000002e-09,\n",
" 1.9022688375e-09,\n",
" 1.9345650862e-09,\n",
" 1.9399683201e-09,\n",
" 1.8398056305999999e-09,\n",
" 1.901870069e-09,\n",
" 2.2125939147e-09,\n",
" 2.1658018184999997e-09,\n",
" 2.3529908034e-09,\n",
" 2.3119568442e-09,\n",
" 2.4475239605999997e-09,\n",
" 2.4074451802e-09,\n",
" 2.1875018587000002e-09,\n",
" 2.2368082165e-09,\n",
" 2.4252272097e-09,\n",
" 2.2069320303e-09,\n",
" 2.2160070983e-09,\n",
" 2.2967367903000003e-09,\n",
" 2.5677046018e-09,\n",
" 2.5796320097e-09,\n",
" 2.4173341374000003e-09,\n",
" 2.1204876842e-09,\n",
" 2.1917059662e-09,\n",
" 2.5626811291e-09,\n",
" 2.8194815923e-09,\n",
" 2.7688609303e-09,\n",
" 2.8681649979000003e-09,\n",
" 3.0220461439e-09,\n",
" 3.216452886e-09,\n",
" 3.2457781002e-09,\n",
" 3.5285070808e-09,\n",
" 3.911131888e-09,\n",
" 3.924359308e-09,\n",
" 4.177915435e-09,\n",
" 4.3060258418e-09,\n",
" 4.6245980628e-09,\n",
" 4.647143942699999e-09,\n",
" 4.479580366100001e-09,\n",
" 4.281764488700001e-09,\n",
" 4.4465506713999995e-09,\n",
" 4.566946844e-09,\n",
" 4.6999674017e-09,\n",
" 4.7117733381e-09,\n",
" 4.7534466732e-09,\n",
" 4.7504648319999994e-09,\n",
" 4.6663789430999996e-09,\n",
" 4.6100030972999995e-09,\n",
" 4.451256743e-09,\n",
" 4.5970446937e-09,\n",
" 4.2362521486e-09,\n",
" 3.9839303745e-09,\n",
" 4.1669240158e-09,\n",
" 4.194512515e-09,\n",
" 3.9213923218e-09,\n",
" 4.1952230829e-09,\n",
" 4.3817971578e-09,\n",
" 4.534044686999999e-09,\n",
" 4.133468019100001e-09,\n",
" 4.003702276000001e-09,\n",
" 4.1098231587e-09,\n",
" 4.346227448e-09,\n",
" 4.403615487e-09,\n",
" 4.3987114301e-09,\n",
" 4.5263300312999995e-09,\n",
" 4.7097976196e-09,\n",
" 4.7937203704e-09,\n",
" 4.6777208038999995e-09,\n",
" 4.6730935261999995e-09,\n",
" 4.738864716e-09,\n",
" 4.809519093999999e-09,\n",
" 4.7225635086e-09,\n",
" 4.768470489e-09,\n",
" 4.7110577075000005e-09,\n",
" 4.7132779586e-09,\n",
" 4.714384575799999e-09,\n",
" 4.6158323071e-09,\n",
" 4.5787403557e-09,\n",
" 4.6511512529e-09,\n",
" 4.51603074e-09,\n",
" 4.3434102690999995e-09,\n",
" 4.3355848817e-09,\n",
" 4.2516412889e-09,\n",
" 4.1369668978e-09,\n",
" 4.2413216856e-09,\n",
" 4.4023192669e-09,\n",
" 4.4404338779e-09,\n",
" 4.5738328074e-09,\n",
" 4.6959257434e-09,\n",
" 4.6030042113e-09,\n",
" 4.5388886759e-09,\n",
" 4.6242860363e-09,\n",
" 4.6269387858e-09,\n",
" 4.7726151539e-09,\n",
" 4.769741598799999e-09,\n",
" 4.6306168083e-09,\n",
" 4.468846693e-09,\n",
" 4.4262574215e-09,\n",
" 4.2150286848e-09,\n",
" 4.1499626226e-09,\n",
" 4.0140550769e-09,\n",
" 4.0105777204999995e-09,\n",
" 4.1508277529999996e-09,\n",
" 4.0972735017e-09,\n",
" 3.7426329954e-09,\n",
" 3.4876272442e-09,\n",
" 3.4311262673e-09,\n",
" 3.4245715742999996e-09,\n",
" 3.5651979701e-09,\n",
" 3.721787149e-09,\n",
" 3.8002091152e-09,\n",
" 3.7484052605e-09,\n",
" 4.0181636775999995e-09,\n",
" 4.2788603624e-09,\n",
" 4.6015268645e-09,\n",
" 4.7039801226e-09,\n",
" 4.6349840734e-09,\n",
" 4.2392046849e-09,\n",
" 4.0446673527e-09,\n",
" 3.9406313687000004e-09,\n",
" 3.9268274356e-09,\n",
" 4.1243594607000004e-09,\n",
" 4.2250057038e-09,\n",
" 4.0384107931e-09,\n",
" 3.8510824359e-09,\n",
" 3.879216259e-09,\n",
" 3.7210642901e-09,\n",
" 3.4697687968e-09,\n",
" 3.9635916721e-09,\n",
" 4.050512505e-09,\n",
" 3.8944445949e-09,\n",
" 3.5800115055e-09,\n",
" 3.2828541948e-09,\n",
" 2.6580306447000003e-09,\n",
" 2.1877236047e-09,\n",
" 2.0066632719e-09,\n",
" 2.410159962e-09,\n",
" 2.1810261259e-09,\n",
" 2.2785406315999997e-09,\n",
" 2.0540423632e-09,\n",
" 2.0213343259e-09,\n",
" 1.4038619748e-09,\n",
" 1.541052329e-09,\n",
" 1.8208999213e-09,\n",
" 1.8152184108e-09,\n",
" 1.923077789e-09,\n",
" 1.7154411867999998e-09,\n",
" 1.9493921196e-09,\n",
" 1.7960403462000001e-09,\n",
" 1.7194095164e-09,\n",
" 1.5895932648e-09,\n",
" 2.0435393975e-09,\n",
" 1.8430175323999999e-09,\n",
" 1.7007242942e-09,\n",
" 1.8992031838000002e-09,\n",
" 1.7783956816e-09,\n",
" 1.7904530438999999e-09,\n",
" 1.7298730673e-09,\n",
" 1.6120660458e-09,\n",
" 1.6480559173e-09,\n",
" 1.8062385348e-09,\n",
" 2.3364593234e-09,\n",
" 2.212194639e-09,\n",
" 2.1239963108e-09,\n",
" 2.0527522087999997e-09,\n",
" 1.8184448264999999e-09,\n",
" 1.6561303599e-09,\n",
" 1.6459290669e-09,\n",
" 1.8362376106e-09,\n",
" 2.1161550957e-09,\n",
" 2.2162486337e-09,\n",
" 1.8575119293e-09,\n",
" 1.8457688675999998e-09,\n",
" 1.8392417824e-09,\n",
" 1.4556786167e-09,\n",
" 9.591748136e-10,\n",
" 5.707532515e-10,\n",
" 8.334516535e-10,\n",
" 5.436112629999999e-10,\n",
" 8.597606260000001e-10,\n",
" 5.102020986e-10,\n",
" 6.864081027e-10,\n",
" 8.215678018e-10,\n",
" 5.729093203999999e-10,\n",
" 4.874233188e-10,\n",
" 7.985766758e-10,\n",
" 8.103951603000001e-10,\n",
" 7.439626336000001e-10,\n",
" 8.172762287e-10,\n",
" 7.618868442e-10,\n",
" 6.378982035e-10,\n",
" 8.658461254e-10,\n",
" 1.2907448221e-09,\n",
" 1.0431238074e-09,\n",
" 8.294843721000001e-10,\n",
" 7.830648930000001e-10,\n",
" 9.068734968e-10,\n",
" 1.1664668159e-09,\n",
" 1.1591889873e-09,\n",
" 9.135470819e-10,\n",
" 8.178629342e-10,\n",
" 1.5382935199000001e-09,\n",
" 1.5755928867999999e-09,\n",
" 9.183436727e-10,\n",
" 3.266069102e-10,\n",
" 6.590880745999999e-10,\n",
" 5.809703879e-10,\n",
" 2.9229103709999996e-10,\n",
" 1.398037662e-10,\n",
" 7.10448917e-11,\n",
" 1.1211645920000001e-10,\n",
" 8.597455333e-10,\n",
" 9.35304703e-11,\n",
" 9.3202511e-12,\n",
" 9.612962110000001e-11,\n",
" 5.55667949e-11,\n",
" 2.249146635e-10,\n",
" 3.323950618e-10,\n",
" 9.611386719999999e-11,\n",
" 3.972813462e-10,\n",
" 1.1428047550000001e-10,\n",
" 1.13884302e-10,\n",
" 2.312292305e-10,\n",
" 2.518325895e-10,\n",
" 6.366554304000001e-10,\n",
" 6.848640395e-10,\n",
" 4.805693326e-10,\n",
" 3.796419725e-10,\n",
" 6.5231677e-10,\n",
" 6.60733224e-10,\n",
" 1.0249094084e-09,\n",
" 1.3632252120999998e-09,\n",
" 1.8167161216000001e-09,\n",
" 1.7671599362e-09,\n",
" 1.6257908444e-09,\n",
" 1.7270459074e-09,\n",
" 1.637771258e-09,\n",
" 1.6969059202000002e-09,\n",
" 1.5382623612e-09,\n",
" 1.5440162341999998e-09,\n",
" 1.4879249234000001e-09,\n",
" 1.5457048962e-09,\n",
" 1.7584482350999999e-09,\n",
" 1.7277093465e-09,\n",
" 1.8906518439e-09,\n",
" 1.6913928348e-09,\n",
" 1.8165662008000002e-09,\n",
" 1.5364501370000002e-09,\n",
" 1.7031923537e-09,\n",
" 1.5892193971e-09,\n",
" 1.7701690941999998e-09,\n",
" 1.7842493857999998e-09,\n",
" 1.5600919035e-09,\n",
" 2.0977859943e-09,\n",
" 2.2020179257e-09,\n",
" 2.3165623711e-09,\n",
" 2.0748243545e-09,\n",
" 1.9256748931e-09,\n",
" 2.0035822402e-09,\n",
" 1.6084441391e-09,\n",
" 8.643771896e-10,\n",
" 5.412556542e-10,\n",
" 6.260879851999999e-10,\n",
" 9.525864207e-10,\n",
" 7.797573573999999e-10,\n",
" 1.2703918796e-09,\n",
" 1.0445962396e-09,\n",
" 7.107537671e-10,\n",
" 5.515203799e-10,\n",
" 5.333088968000001e-10,\n",
" 2.8138817440000003e-10,\n",
" 2.331376547e-10,\n",
" 7.496529197000001e-10,\n",
" 2.871095149e-10,\n",
" 1.318557761e-10,\n",
" 4.981512034e-10,\n",
" 5.328982621e-10,\n",
" 6.007054564999999e-10,\n",
" 1.541719674e-10,\n",
" 1.381611355e-10,\n",
" 2.868027113e-10,\n",
" 9.055762211e-10,\n",
" 8.534548118e-10,\n",
" 1.1762077634000001e-09,\n",
" 1.7716154338000002e-09,\n",
" 1.8713615973e-09,\n",
" 1.9427403541e-09,\n",
" 1.9721108973999997e-09,\n",
" 1.4733589267e-09,\n",
" 2.1096167849e-09,\n",
" 1.7661886058e-09,\n",
" 1.9867893041e-09,\n",
" 1.4204416547000001e-09,\n",
" 1.8230749213e-09,\n",
" 2.3414184344e-09,\n",
" 1.6064250406e-09,\n",
" 1.5939566193e-09,\n",
" 2.5887872797e-09,\n",
" 2.1771470525e-09,\n",
" 2.1150622195e-09,\n",
" 2.2786824188999998e-09,\n",
" 2.3868411418e-09,\n",
" 2.0529575124e-09,\n",
" 2.0718988094e-09,\n",
" 2.0611106157e-09,\n",
" 2.0743635598e-09,\n",
" 2.0979343908999997e-09,\n",
" 1.7234621366e-09,\n",
" 1.7102884494e-09,\n",
" 1.743406583e-09,\n",
" 1.9211082238e-09,\n",
" 2.252534292e-09,\n",
" 2.2616208901000003e-09,\n",
" 2.2853506652e-09,\n",
" 2.5665159108e-09,\n",
" 2.4823520901e-09,\n",
" 2.5149421718e-09,\n",
" 2.5119899718999997e-09,\n",
" 2.623020315e-09,\n",
" 2.497443243e-09,\n",
" 2.6914040246000003e-09,\n",
" 2.3635711868999997e-09,\n",
" 2.2749743563e-09,\n",
" 2.2136601776e-09,\n",
" 2.0212411839e-09,\n",
" 1.4762717416e-09,\n",
" 6.856531779e-10,\n",
" 2.093383151e-10,\n",
" 1.442379894e-10,\n",
" 1.7450114732e-09,\n",
" 7.682566667e-10,\n",
" 1.1656882702e-09,\n",
" 7.848152048e-10,\n",
" 9.476994424e-10,\n",
" 5.746683621000001e-10,\n",
" 5.486786406000001e-10,\n",
" 3.596601974e-10,\n",
" 9.971845363e-10,\n",
" 6.970294299e-10,\n",
" 6.740556375e-10,\n",
" 7.763381296e-10,\n",
" 8.225753714e-10,\n",
" 7.335473525000001e-10,\n",
" 8.341871979999999e-10,\n",
" 1.0607977321999999e-09,\n",
" 9.952625822e-10,\n",
" 1.5096392778000001e-09,\n",
" 7.38357972e-10,\n",
" 9.390988727e-10,\n",
" 1.0826977157e-09,\n",
" 1.35086375e-09,\n",
" 1.3609907225e-09,\n",
" 1.6243481414000002e-09,\n",
" 1.3321920365e-09,\n",
" 1.1452722766000002e-09,\n",
" 8.55900788e-10,\n",
" 1.0585506962e-09,\n",
" 9.596696312e-10,\n",
" 1.1149753511e-09,\n",
" 9.345927752e-10,\n",
" 1.3543449221e-09,\n",
" 1.1706642007e-09,\n",
" 1.0427881569e-09,\n",
" 1.0856583455e-09,\n",
" 1.0606860722e-09,\n",
" 1.0372040326e-09,\n",
" 1.2493678717000001e-09,\n",
" 9.705167649000001e-10,\n",
" 1.1942577145999999e-09,\n",
" 9.703927025e-10,\n",
" 9.069981447e-10,\n",
" 1.0724732061e-09,\n",
" 9.813951719e-10,\n",
" 1.1772870818e-09,\n",
" 1.2374729251000001e-09,\n",
" 1.4064481727e-09,\n",
" 1.4432164681999999e-09,\n",
" 1.2434603548000001e-09,\n",
" 1.4325063652000002e-09,\n",
" 2.0463007777e-09,\n",
" 1.4658995289000002e-09,\n",
" 1.6340160765000001e-09,\n",
" 1.1153536633e-09,\n",
" 8.515454676000001e-10,\n",
" 5.000878694000001e-10,\n",
" 4.376151024e-10,\n",
" 3.5292806659999995e-10,\n",
" 2.299845156e-10,\n",
" 9.050893459999999e-11,\n",
" 2.112915091e-10,\n",
" 1.208556153e-10,\n",
" 1.639452839e-10,\n",
" 1.306421163e-10,\n",
" 6.933720979999999e-11,\n",
" 1.987857766e-10,\n",
" 1.521511329e-10,\n",
" 3.671435226e-10,\n",
" 4.8091672e-11,\n",
" 4.02227831e-11,\n",
" 3.6432286699999996e-11,\n",
" 5.0518466800000004e-11,\n",
" 4.69536704e-11,\n",
" 2.5175327400000005e-10,\n",
" 4.090441324e-10,\n",
" 2.749417099e-10,\n",
" 6.96942207e-10,\n",
" 1.0776787386e-09,\n",
" 8.319849953000001e-10,\n",
" 1.3060155577000002e-09,\n",
" 1.4448642377e-09,\n",
" 9.269322679999999e-10,\n",
" 8.332122492000001e-10,\n",
" 4.414636437e-10,\n",
" 1.212992408e-10,\n",
" 3.7361297020000003e-10,\n",
" 2.0127848479999998e-10,\n",
" 5.05184552e-11,\n",
" 7.698881922000001e-10,\n",
" 9.556017117e-10,\n",
" 1.6747063690999998e-09,\n",
" 1.5625473125e-09,\n",
" 2.3476429077000002e-09,\n",
" 1.9595967949e-09,\n",
" 2.0348507204000003e-09,\n",
" 2.0297940179e-09,\n",
" 2.2731995878000003e-09,\n",
" 2.8433399586e-09,\n",
" 3.6671256126e-09,\n",
" 4.1531086988999994e-09,\n",
" 4.3510462046e-09,\n",
" 4.4823088222e-09,\n",
" 4.4100935554e-09,\n",
" 4.837356815e-09,\n",
" 4.7049164792e-09,\n",
" 4.7892953425e-09,\n",
" 4.933161079099999e-09,\n",
" 5.2494297689e-09,\n",
" 5.7059984338e-09,\n",
" 6.0630128394e-09,\n",
" 6.592504377e-09,\n",
" 6.5602164161e-09,\n",
" 6.9093034061e-09,\n",
" 7.0322462107e-09,\n",
" 6.8365785793e-09,\n",
" 7.0203273822999995e-09,\n",
" 6.7675455304e-09,\n",
" 6.9620140360000005e-09,\n",
" 6.7257185676e-09,\n",
" 6.4261281886e-09,\n",
" 5.276570065299999e-09,\n",
" 4.4498365272e-09,\n",
" 4.259344824300001e-09,\n",
" 5.217586204e-09,\n",
" 4.546767499e-09,\n",
" 3.0467568029000003e-09,\n",
" 1.6250688175e-09,\n",
" 8.947742127e-10,\n",
" 3.760927218e-10,\n",
" 5.032519480999999e-10,\n",
" 6.359562407e-10,\n",
" 1.017214055e-09,\n",
" 1.0727600021999999e-09,\n",
" 1.2370122589999998e-09,\n",
" 1.1646935015e-09,\n",
" 1.5971095202e-09,\n",
" 1.5104625353e-09,\n",
" 1.6130503959e-09,\n",
" 1.5586673375e-09,\n",
" 1.2666658874000001e-09,\n",
" 1.0879809460000001e-09,\n",
" 1.1628228467e-09,\n",
" 1.0689263573e-09,\n",
" 7.648106414e-10,\n",
" 4.124080591e-10,\n",
" 3.478107607e-10,\n",
" 8.650040111000001e-10,\n",
" 1.4135574757e-09,\n",
" 1.5842726945e-09,\n",
" 1.7218172685e-09,\n",
" 1.6977930227e-09,\n",
" 1.7437569615e-09,\n",
" 1.8704145126e-09,\n",
" 1.8496177554e-09,\n",
" 1.7666251143e-09,\n",
" 1.9702617545e-09,\n",
" 1.838747004e-09,\n",
" 1.7067534034e-09,\n",
" 2.0272368154999998e-09,\n",
" 2.5774396142e-09,\n",
" 1.9057024976e-09,\n",
" 2.2179005818e-09,\n",
" 2.2049064455e-09,\n",
" 1.7655937229e-09,\n",
" 1.5118567949999999e-09,\n",
" 2.0933132636999997e-09,\n",
" ...]"
]
},
"execution_count": 166,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Task 9\n",
"time_s = []\n",
"for i in range(len(timeDiff)):\n",
" time_s.append(int(timeDiff[i]))\n",
"time_s\n",
"speed = [x/y for x, y in zip(dis, time_s)]\n",
"speed"
]
},
{
"cell_type": "code",
"execution_count": 226,
"id": "a193dac1",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[]"
]
},
"execution_count": 226,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEFCAYAAAArPXp4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABCFElEQVR4nO2dd5wc5ZGwn5rNu9Iq54AyQiIjJLLI0YcOYw6MbcAGy2AwhsOfDc5HsPEFznDmwDIWBg6QsQmWDZxMPJEEksgSoCy0QkI5a1e7O/X90T0zPTM9Mz27s9Mb6vn9YLvf1NWjma5+36q3SlQVwzAMwygEkbAFMAzDMDoPplQMwzCMgmFKxTAMwygYplQMwzCMgmFKxTAMwygYpWELUCz69u2rI0aMCFsMwzCMDsXChQs3qWq/oO27jFIZMWIECxYsCFsMwzCMDoWIrM6nvS1/GYZhGAXDlIphGIZRMEypGIZhGAXDlIphGIZRMEypGIZhGAXDlIphGIZRMEypGIZhGAWjy+xTaS0vf7KB7/3pfTbtagDg0qP3Y1DPKsStF/dA3JLYOfF6tzytfUp9SjkZ+/m3T633/skoQ4tlzy4Dnnonw4ISVec4qooCqooqKM7f5qjy0LzVVJWVUF1eQk1FKQcO6cHw3tWcdeDAuCyGYbRPTKkE5PXlm+MKBeCBN/LaD2S0gr+9vw6AWdOP4qhRfUKWxjCMbEhXSdI1adIkbe2O+sbmKHv2NSMCZZEIzrt27C0cYp9k7DNNnJPUIN9+iqb0T69/Y/lm/vmx91pze6ETEYiI0BRN/k5WlZVw2PCefHnycCIZZnR+s6Pk+uTZVlKbLLM7v765ZmrknMkV5h5yzzAzyJF6vwEp1CTRb5j0sdNb9awuo2+3isIIYQRGRBaq6qSg7XPOVETkTOBOoAS4T1Vvd8sFuBW4AGgG7lHVu3z63wRc7ra5VlXniMgw4EFgAM4zcoaq3unTdxpwCxAFmoDrVPVVt+5S4Mdu01tV9YGgN91Sykoi9Khqn2ao8w4bQmNzlPfrttPUrDRGoyzbsIv367ZzxXEjOWRYT2fJyV16irp/G5uj/OjJD8MWHyAuUyp7G5t5fflmXl++OQSpjPbE//2/E9mvT03YYhhZyKpURKQEuBs4DagD5ovIbFVdDFwGDAPGq2pURPr79J8AXARMBAYDz4vIOBwFcYOqvi0i3YGFIvKcO66XF4DZqqoicjDwGDBeRHoDPwMm4Silha5cW1v4OXR4RIQLjxzOhUfm1689KRUjwf4DugdqF5/FtpJCLVjkM0ymVRLNcHLMmD4M7lnVErGMIpJrpjIZWKaqKwBEZBYwDVgMXAVcrKpRAFXd4NN/GjBLVRuAlSKyDJisqm8A69x+O0XkI2CIO24cVd3lOa0h8RU7A3hOVbe4cj0HnAk8GuiuW8B1s97hqXc/K+iYvarLGNSjKulH5PdD8xZ5HyLJ5eljZPpxprYd0acagE+37CFaoIeL0XLOmDiA334t8GqDYbQrcimVIcAaz3kdMMU9Hg1cKCLnARtxlraW+vSfl9J/iLeBiIwADgPedM+vBFDVe93z84BfAv2Bc7LIlTSu23c6MB1g+PDhOW41O0s37MrdKE+27mlk657Ggo9rFIae1WXMvvo4hrtK1zCM3LTG+6sCqFfVSSLyRWAmcHw+A4hIN+BxHFvJDkgokxiq+iTwpIicgGNfOTXo+Ko6A5gBjqE+H9lSWfTZjtZ0Nzog2/Y0csK/vcQhQ3vQrEo0GrNHJWxS0ahz3BzVpDr1sV+pWx5VaIpGaWzO/ZW8/LiR/OQLE4pwt4ZRGHIplbU4dpMYQ90ycGYHT7jHTwL359NfRMpwFMrDqvqET98kVHWuiIwSkb7uGCemjPtyrjFaw3dOHsN/vbisLS9htFPeq9se2rV//+pKNntc2VvCt6aO5oBBtQWSyDCyk9WlWERKgSXAKTgP8vk4dpRFInI7sERVZ4rIicC/qeqRKf0nAo/g2GYG4xjex+J4cz0AbFHV67Jcfwyw3DXUHw78FUeB9AIWAoe7Td8GjojZWPwohEuxUTgumfkWc5dsDFsMw8NbPzyF/rWVYYthtDMK6lKsqk0icg0wB8eleKaqLnKrbwceFpHrgV3AFT79F4nIYzgG+CbgalVtFpHjgK8BH4jIu27zH6rqMyk2lfOBS0SkEdgLXKiOFtwiIrfgKDmAm7MplK5GYpd6YrkltmMdPEsxsbaARhNtNKmNU+AdQ4FoNLHXRvEs+ZC+ez7WLzbm6s17OO+wwVxx3Mik62jsOq7MV/7PwqJ/dhGB3jXlbNq1r+jXDh0LVmAUANv82IFobI4y9kfPhi2GkcI/nzbODYPjnHtDyazatJs9+5rdivTndsTTNnbYHNV4FIFUelWXcdDQnkQyhN9xDhObHb0bJQVJ2gDp3ezpF8bHj5PH9+cfD0vziTE6MfnOVEyp5GBXQxMH/mxOG0hkGJ2T337tCM6YODBsMYwCka9SaZ/bw9sRO+vN5dcwgtKtopQJ5hTQpbGAkjkY1KOKu758GNc++k7YorRLrjpxNKP61vhGD04t8Ysd5VuW0jNozKkWy+Cz4JMWzyupb/qSleAsWyVsSt7ozMmkxn5zyty/LVg5yNXFb9d90MukxRPLEGfMyztrtvHOmm0M61XFYcN7BbuQ0WkwpRKA48b05ehRfdiws57lG3cDMKpvDSs27Q5ZsvC55+XlYYtgtGOe/e7x5s7cxTClEoDeNeU8Ov0orn747bhSMYWSGW8kWa+xOLksfTaS3i7zDMJ7LBlmDpnG8ZlwpEUC9m2fQQ6AtVv3sjtmkG9HnHpAf2oqEj/zbJM+7737hguK16WXpfZT4KAhPQLHMDM6D6ZU8mBwT/Phz0SPqjJu+ccDgeQHkioM6lHJFMuDYhhdAlMqeVBdbh9XJrbvbcxqd3r8qmM4Yj9bXzeMzo49JfNgUyvDZXQ1ThjXj55VZew/sDuHDesZtjiGYRQBUyp5cNt5B3HbeQeFcu1b/7aY+15dGcq1W8pxY/ow/YTRYYthGEYRMaXSQfjCIYP5/WsrC5ZMKV/u/eoRVJWXBG5fViIcbXYUw+hymFJpBzRHlYffXM2mndmX175z0pik85h++XxHPY8tqGsj6aC2spQRfaspjUTiXlrdKkvp390cFwzDSMaUSjvgqXfW8tO/LMrdMCR21Ddx5q9fSSv/y9XHcojZSgzD8GBKJSCqys1/W8z9r60K3OecgwbRraI0KbqvN/JvLEpwgFxN7ZJpd7/Gqz84iaG9LDOiYRgOplQC8tG6nXkpFICnP/CPNNuZOO5XL6WVVZRGmPv9kxhguTkMo8thSiUgEwbXMnlkb95a2bK0LYcN7xk/zrgj2btp0KfYG8MpaYyU8T5aF27q44amKBt3NphSMYwuiIW+76Ss3baX+sZmSkSIiLB6y26+9vu3whaLX51/EP1rK4mIE1wlIkJEnBAhIpnPY3lHIiJEIsT7i6desvxNyiVCeu6QpJAv7nE8wZn7t7wkQo/qsmJ9VIbRLrB8KhnoakolF898sI5vP/x22GIY7YSffGEClx83MmwxjHZIQdMJG52Xsw8axKrbz8lY39DUzGML6mhsisbdiGOzAkSoKI3Qp6acitISFq/bHk8dvPTznfTtXsHnO+r5y7ufBZbn2DF9aI4q0Sg0q9IUVaJRdcq85+qWxY+hORp128GefU1Eu8Z7UkF559OtgCkVo/WYUmnHqCpPf7COTTsbiEQEEWFnfSP/+r+fFPxaZSXik2e+eLy2bHNaWWwZLOJZvootZXmXyASIRIQSoLKsJJG+NyCnTxiQvlwmwtLPd7J0w66M/VQ13h4SS2eZUvjG5CqNCKUlEo+uHLuXMf27MeNrR1BbVeZZtkuWyTDaO6ZU2jF/X/w51zxSnORgjSH5NQ/vXc34gd05dHhPIiKUeB/SIikPaE+5N8R9Wrv0HO0AW/bsY/mG3Z6Zl1Me8blmeWmEEX0GcNqEAXnfkzdJl5eYrF4lGVMok/brZZGcjU6BKZV2zKkHDOCms8azdtteoursdUkYjpWd9U08++H6sMVsFZ9u2cOnW/bw98Wfhy1K6Cz6lzOScp8YRkfEvsHtmJKI8K2pmQMybthZz6db9rBswy4amqJFlKxw7D+ge3xpJzZ78C4beWci767ZVlTZvnXCqKSHfKYZSBBim17Vs+k1VhZVOGpUH1MoRqfAvsUBeeLtOv75sfcCta0si1Bbmex6qgTLIJhU532wJvVxStZu2xtInvbMJ5/vbJNxrzpxND84c3ybjG0YRmZMqQRgX1M0sEIBqG+MUt9ouVfC5J6Xl/N/n2z02Ercvyn7VbyVktQuVuXMkkoiKQb55K7JaY49Np1UUvfHJMsWrB1+109r4wQqnbtkk1cwX9tT7DxfB4eWIAJlJZE2v07RiJki3c+2JJL8j57q8JJpA3PqcH4Fml4bH+OQYT25/+tHpr3MhoEplQBs3NXAv55/MB+t34Fq8vJM3AsJ58fy7Ifr4nns2wtDe1VRWVbiWXJJeHnFbDXxXfse76+o5zhRnlLmGS+acYknHK+yxSFHFjDSUXVe0ozCsnD1VpZv2MVhw8PPrmpKJQebdzVw7O0vhi1Gq6jb2vGXycLAu1M/9uLg3fG/q6EpVPnOOnBgYsYhEI1qu3fcOHl8f3549gHxzxAyzdqyzfa8x/6RETKNkTrZ8511Jl0rt4yIX13LZUzF9zNIkVuA0nYyAzSlkoNe1eV85+Qx/NeLy8IWxcjB2z85LWUJK7Hek+qSDMTdl+P7U7A9IYbRWnIqFRE5E7gTKAHuU9Xb3XIBbgUuAJqBe1T1Lp/+NwGXu22uVdU5IjIMeBAYgLM6MkNV7/TpK+61zwb2AJep6ttu3aXAj92mt6rqA/nceFAiEeGG0/fnhtP3b4vhA7F19z4Ou+W50K4fFBHnQd2Ux5b2H549ns93NPDRuh3xhztAfWMz763ZTnmpkxhsZN8aDh/ei9qqMl+7wEnj+9G7przQt2QYRp5kVSoiUgLcDZwG1AHzRWS2qi4GLgOGAeNVNSoi/X36TwAuAiYCg4HnRWQc0ATcoKpvi0h3YKGIPOeO6+UsYKz73xTgHmCKiPQGfgZMwlFKC125trboU2jn5POQbmt6VJVRVhKhvEQoLYlQWiKUuRkhI543/9jD/oO12+N9x/bvxtgB3eL2KFX4xTMfZ73evmZn/X3rnn18efJwSiK4u+wTGyUjkXRvuKj7mXWrKKWXKRvDKBq5ZiqTgWWqugJARGYB04DFwFXAxaoaBVDVDT79pwGzVLUBWCkiy4DJqvoGsM7tt1NEPgKGuOOm9n9QnaiX80Skp4gMAk4EnlPVLa5czwFnAo/mdfd5sH1PI4fc/Pe2Gr7DsH1vY4v7Lt2wK2vYk2ys2bKXM349t0V9nXTINURdLwHvJtLYeZqDAYDrrOAeJvVPdl5I7e/00NT+UeWak8cw/YTMe48Mo6OTS6kMAdZ4zutwZgwAo4ELReQ8YCPO0tZSn/7zUvoP8TYQkRHAYcCb7vmVAKp6b4brD8lSnoSITAemAwwfPjzrjeaiuYtEc+6M7Khv4v267bkbFoFfPPNxztkZwP9cPoXjxvYtgkSGUVhaY6ivAOpVdZKIfBGYCRyfzwAi0g14HLhOVXdAXJkUBFWdAcwAJ/R9a8bqXVOeNapvMVizZQ+/nbvc94049W2ZeD1s2d3AS59sDEdoo0W0ZkZoGGGSS6msxbGbxBjqloEzO3jCPX4SuD+f/iJShqNQHlbVJ3z6Zuu/FmcJzFv+ctY7aUO2723k/bptqDpr/z94/H3qG80Xvz1x2TEjOP/woY4zQUQSyb+8xyLuecIbrCmq9K4pd2w4EUn2LjMPMcNII5dSmQ+MFZGROA/yi4CL3bqngJOAlcBUYIlP/9nAIyJyB46hfizwluvV9XvgI1W9I8v1ZwPXuLacKcB2VV0nInOAX4hIbKfP6cBNOe6lzTjhX1+yN8t2zh9eX8UfXl8VthhGkbnlHw/ka0ftF7YYXYqsSkVVm0TkGmAOjkvxTFVd5FbfDjwsItcDu4ArfPovEpHHcAzwTcDVqtosIscBXwM+EJF33eY/VNVnUmwqz+C4Ey/DcSn+ulu3RURuwVF6ADfHjPZh8LtLJnHXC445SQQWrNpKY3M0yWsrFg8s5hmVtPnL4zHl3TMR22YR23jXUiO3YXRVRvetCVuELoelE86Th95YxU/+sih3Q8OXcw4axLDe1Sxet4Nx/bsR1Viom4TyjOOz8zh+7rdLOmN9+q5p377ZlrM0OfJStphOsXoROHZ0X2qr/OMx+Y3hLRs3oDtV5SWZZTKMImDphNuQOYvWm0JpJU9/sC5+PHdJ53ceeOqdz3jtxpPDFsMwioYplTwojZhh1siPtdv2MuLGp+Pn5x4ymO+dvn/6jMnnq+WdtXi9+8Dr4adu/5SZnKdNpm9trMvgnlWdK3KwESq2/NVCbv3bYu57dWXBxjOMjsSpBzhplr2pmWM2wX86chgn7Z8WYMPooNjyV5H4/pnjOWBQLc2qGZNoQXKk29ZkDiwmIsLCVVt44I3VYYtitFOe/yhz+udnP1wf+p4uIzxMqbSQ8tII5x8xNH7uzR0SP8eTpyTFCBtbzkgc+/fDp516Qn94xydl42Pqcok3LAn4y/b0B+v4tzmftOxDMTo9910yySc/TnL4m0OG9QhRQiNsTKm0gqbmKGN+9GzYYhhGXozuV8Oz3z2B8lKzoxiFx75VraAkIlxytG2sMjoWyzfujge6NIxCYzOVgMxbsZmLZszL3bAT8d1TxjJlZG+ibrTdqCp9u1VQU+F8bVITYiVn5Iv9lYztJP6/RLk3kZZf3hQkObtepnapsnjLY/3S7qG9G7sMowNgSiUga7tgSt47X0gNOm20B849ZDB3ffmwsMUwDF9MqQTk/COGMrRXFas2746XqcKmXQ2URCI+hniNGy4hJYKwKkN6VTG0V3WSwf6zbXv5weMfFO+mjA7J7Pc+Y/Z7n4UtRofipe+dyEgL2VIUTKnkwZRRfZgyqk+bjR+NKht3NvD68s3JedbxCS+SEtIkdUmooamZaJS4K7M3jEhMuW3YUU9EhBWbdmMYnZVBPSrpVe0fKscoPLb5sYOwctNuTvr3l8MWIyezrzk2YR/xbIhLOiamBCXJxhFTkmu27km2sbgVEwf1oLREksaCFPuJn00l9tdjR4nXmT3FMLJimx87KXVb94QtQiDO/c1rzLvpFAb2qGzxGCNsmcIwOiymVNo5MdvM0aP6sPS2s9I3NbrnUYU5H67nhj+9F67AwINvrGJwzyoU+IeDB9GzujxskQzDKBK2/BWAvfua+fof3mLeitBStnRo7rzoUCB5icnrBpwoy7Z05R0x9xKXt8zb1jckfsBxgsrqF7I/p6zponj65GqXZVkvS9j/dLn83bEzjRMriSo0RaM0NaemB/DY8Ugsc8ZCF8XGKokI4/p3J2IBW9sltvzVBmza1WAKpRV8d9a7YYtgdGLMs6t9YUolAMN6V8cD5DU2R9nT0OxUxF6sUryrykoivm9svkmevG7InhhKpFSnvvWlt0vv5He9VC+w9HbpMqTJ3EpZydD3o3U7ePaD9T6xzpL7Zo+B5n8ffkuGaffvbvL0xrYC1y3cE+sq7h7uto+N+cnnOzGKT88MSdCMcDClkidlJRF6VLd9dJuGpmY+21ZPRGD99no+39lAaUSoKI1QEhEiIvHoxzFvqF41ZdSUlwZ++Dvl6QogtT0+iihbe0VZsXE333747Xxu2ehieD3/IrGoB25Z/LtNYqksRur7znG/ejFjXbw8Q0Xq/rJs14nLnXYPCU/Ek8b3545/OoSK0q6bsdOUSgv51kMLmLMoc/hvwzCy490M7Mz9O7599+n313HjmeMZ1rs6bFFCw5RKCzloSA9TKl2MR745Bchs/PY1nmes944cfLxs47TEKJ9WHqRNhjGzOVA45ckOBdk2+KbuH8rVx+vTkKku61iSWhbs+qnLqKURobKs685SwJRKXjQ2R7n4d/OYv2pr2KK0S44c0atF/ZJjA7SCfIZJWa5Thaao0hxVmqJKNKo0RaPx82tPGcsxo/sWRk7D6MSYUsmDVZt2d3qFMqC2gnEDuiMifOPYEYwfWEsk4qxrl7h2nNISoawkQlmJ2E50wzCSMKWSB6f959ywRWhz9jVFOWBQLQJc8cACmqKFWef+wsGDAOLhWCrLInz7xDFUlTtLBaURoU+3ioJcyzCM8LDNj3lw3ysruPXpjwK3nzyiN57l2szrwZK+BOQXQNLp6+0DdVv3snTDrjzuon3zzeNHenKwpMYKc8i2EQ9gYI8qLjpymG2mM4wCYJsf25Arjh/FFcePClsMX+74+yfc9eKysMVoNb97ZWVBxunTrZwzJg4syFiGYQTHlEon4KVPNnQKhZKNsf27Me3QwRk2W3rLlAG1lZx2wICiymcYhoMplU5A/+7h2iIi4uw6HzegG189aj8EKIlEOOfgQVSURuLLexEBb3phM/IbRucjp01FRM4E7gRKgPtU9Xa3XIBbgQuAZuAeVb3Lp/9NwOVum2tVdY5bPhP4ArBBVQ/McO1pwC1AFGgCrlPVV926S4Efu01vVdUHst1HofKp7G5o4s2Vm5NtICmHUVX2NSmqSk1FKT2ry5J82f3Ci5Di754IKeIXikTjr+mx8nkrNvOblzr3bKUteexbRzN5ZO+wxTCMdkdBbSoiUgLcDZwG1AHzRWS2qi4GLgOGAeNVNSoi/X36TwAuAiYCg4HnRWScqjYDfwB+AzyYRYQXgNmqqiJyMPAYMF5EegM/AybhPFcXunK1ub/vV+57k3fXbGvryxhFZtuefWGLYBidglzLX5OBZaq6AkBEZgHTgMXAVcDFqhoFUNUNPv2nAbNUtQFYKSLL3DHfUNW5IjIi28VV1evWVENiGf0M4DlV3eLK9RxwJvBojvtpMbc9vbhgRmSj8Bw1qjf/eeGh8XPvBHxAbSUl5glmGEUhl1IZAqzxnNcBU9zj0cCFInIesBFnaWupT/95Kf2HZLugiFwJoKr3uufnAb8E+gPnZJErbVwRmQ5MBxg+fHi2y2aloam5yyqU48f2Zeq4foBjA3lj+SY+WLs9HkTPmxdjz77mpFTBsfJYsMB4emAS9hRVJ8HYqH419KgqQyShEFKPUxERfv4PE+kXsk3JMIwErTHUVwD1qjpJRL4IzASOb61AMWXiOX8SeFJETsCxr5yax1gzgBng2FRaKlNFaQnPfvd4zrrzlZYO0WF5ZekmXlm6Ka38smNG8PNzJ4YgkWEY7ZlcMdzX4thNYgx1y8CZHTzhHj8JHJxn/7xQ1bnAKBHpW8hxg3LAoFoGtSLvemejd42lCDYMI51cM5X5wFgRGYnz0L4IuNitewo4CVgJTAWW+PSfDTwiInfgGOrHAm8FFU5ExgDLXUP94Tizo83AHOAXIhKLYHg6cFPQcVvK6zeeTHM02Rtr775mDr/1uXh5Z+S1G0+mttL5qnh39u/Z1+QeZ4ky68k1ISn9Y+3MtdgwOg9ZlYqqNonINTgP8RJgpqoucqtvBx4WkeuBXcAVPv0XichjOIb9JuBq1/MLEXkUOBHoKyJ1wM9U9fcpNpXzgUtEpBHYC1yojo/tFhG5BUfpAdwcM9q3JeIGU4zxQd12tu3dx8zLjiTqRrhtVo3bCZpjZZ7y5ig0qxMFN6pOnapTdvuzH7f1LbSIY29/MXejdszjVx3DEfu1LIKyYRj5YbG/AvLh2u2cf8/rNDRFCyiVUQye/e7xHDCoNmwxDKNDYrG/2ohH3vrUFEobcMr4/lx/2rh4tOJsZPMEi9G/ewXdKy1nuWGEhSmVgMxf2eara12SFz7ewGHDe3LNyWPDFsUwjAJgSiUg7Sm8fHlJhH3NrZs1VZZFECSe9dDJFU7Secw21JZcc9IYph06hHXb9wIp+1lSUsN+vqMeQRjep9pt6+8QQIbyVEeB1JS1hmG0HrOpBOTvi9Yz/aGFBZTI6Ch85+Qx3HD6/mGLYRihYDaVNuJ0y83RZVm2YRe/m7siPrPpXlnKl44YZqFfDMMHUyp5MGv6UTz1jrPH0jvB++OCNRl6GJ2BZz9cz7Mfrk8qq2+McukxI8IRyDDaMaZU8uCoUX04alSftPIfnn0AG3fVu2fpqW6TS9PX8JPrvOXpmwoXrN7CglVbWb5xFys27mbDzoaM8tZWljKqXzdG9+vGyL7VVJYF97ACN8S+RxbvuV+yrNi9eM9bMl66TBnSAqT0V8+JJpUnD+5tm1Sfck/xtAMp7XtUlfHlyS2PJWcYnRlTKi1g4eqtnH/P62GLkZMd9U28u2Zbq0P1X3XiaMpLkiP6pNq2k/LLZGiTjLr90kkbWyTDWNmXn3yDUKb08W+ToLq8hIsmD6esJFdEI8MwwJRK3lxw7+vMX9XmaVvaFfe8vDxsEUJl975mrpw6OmwxDKNDYEolT7qaQunKTD9hFNXlJVxmthPDCIwplYA89c5arvvju2GLYQRgaK8q/nL1sfTpZnlWDKPYmFIJiCmUjkPd1r0ccevzWdtYTnrDaBvM+hiQhy6fzHFj+nLM6D5MsYdRh+fJd9o0/Y5hdFlsR30X4TcvLuXf/+6X8sZ45IopHDOmb9hiGEa7xHbUtzHRqPLjv3zII29+2mbXqCyLUFlWQm1lmZPfXRLxsEQcp9gDBtUypFdVvI/f3o3U7RfTTxiVtPcipZnvnhK/dw7vi8gDb6zO/wbbGf1rzfZiGIXClEpAXlu2if98bgkLVre991d9Y5T6xijb9jRmbNOeAly2J645aQxT9++XVOZVjKn7Usb060YvS41sGAXDlr8CMvZHz9DY3DU+q67GqtvPCVsEw2i32PJXG7HgR6exaN12IiLuf7G3XkksUbltFYiqcu/Ly3ljxWb2NUUtwVcLOWRYTyBzKJv0uswhcGJ4Xw2+fuyIlgtnGEYaplQC0qO6jGNGO8bcaFS55enFPPnO2qxLVEbruPGs8baT3TA6GKZUWsCufU3c/9qqsMVI4h8OGUxtZSnfOXksVWUlSCRh2I+IJ/mVQMSdVcVmVxEL4W4YRoEwpRKQjTsbOPZXL7KvnS5j/fW9zwB42PVK+/Lk4fzyiweFKZJhGF0QUyoB+et7n7VbheLHo299yqNvtZ3bM8D4gd353+tOaNNrGIbRsbAd9QGxNObpdBHHQcMw8sBcivNk2559HHrzcwWQqOsxfmB3IHPiLk3PleUk6PIOEqBNamKupOvl2MyZOrZfn0wbQ3P187Y4eXx/bjvvIMvTYrR78nUpNqXSApqjyq/+92NmzF1RkPGMrskbN53MoB5VuRsaRojYPpU25J1Pt7Jq826u/+N7YYtSdGZe5nynBCdeTGw1UOKeZMTrxVOPx/PMPU3K5Jjom0idHGvjrfeOgacsfpx6jnfJMlmmTDInjS3JOSJzZbrMtnfGr6C6vJRuFfbzMzof9q0OyKpNuznvv9t/CuG24ht/CD7LG9Gnmv7dKzn5gP5MHdcvvhyVugyVK0d975pyhvWubo3YhmEUmZzLXyJyJnAnUALcp6q3u+UC3ApcADQD96jqXT79bwIud9tcq6pz3PKZwBeADap6YIZri3vts4E9wGWq+rZbdynwY7fprar6QLb7aO3yl6ry0LzVLFy9lQWrtrJ2294Wj2XkR7/uFb5KJzY7iNWJwDGj+1BZWhJvE1NcgqBpVg+49pSxDO1lisswMlHQ5S8RKQHuBk4D6oD5IjJbVRcDlwHDgPGqGhWR/j79JwAXAROBwcDzIjJOVZuBPwC/AR7MIsJZwFj3vynAPcAUEekN/AyYhGP9XOjK1WbRHhev28HuhmbGD6ylV3U5f3h9VVtdykhh486GwG3/8u5neY392IK6nG1e/cFJpngMIyC5lr8mA8tUdQWAiMwCpgGLgauAi1U1CqCqG3z6TwNmqWoDsFJElrljvqGqc0VkRI7rTwMeVGc6NU9EeorIIOBE4DlV3eLK9RxwJvBorhtuKefc9WpbDW20c6IdZ3uSYYROLqUyBFjjOa/DmTEAjAYuFJHzgI04S1tLffrPS+k/JNsFReRKAFW9N8P1h2QpTx1rOjAdYPjw4dkum5Mfnj2eXzzzcavGMFrP9BNGUVEa4fzDhzKib03Y4hiGkUJrDPUVQL2qThKRLwIzgeNbK5CrTAqCqs4AZoBjU2nNWGdOHGRKpR0Qc+P+rxeXBWo/ql8N5x3q/x6T7PGViD4dcb3T4ucRQUQoiwjnHT6ECo/NxjCMZHIplbU4dpMYQ90ycGYHT7jHTwL359k/CJn6r8VZAvOWv5zHuHkzvE913nk3djU0cd2sd1jyuZNQK5e3UyafiWyb81L7rN9Rn5eMnZ0VG3fzH88VLo3yjU98ULCxMjFhUC2XHL0fChw8tAc9q5OTiMW+DyISP+7brYLKMlN2RvjkUirzgbEiMhLnQX4RcLFb9xRwErASmAr4/XJnA4+IyB04hvqxwFt5yDcbuMa15UwBtqvqOhGZA/xCRHq57U4Hbspj3DZh9ebd3PzXxTSr0hxVXlm6KWyRjA7I4nU7WqS8LNmY0R7IqlRUtUlErgHm4LgUz1TVRW717cDDInI9sAu4wqf/IhF5DMew3wRc7Xp+ISKP4sw2+opIHfAzVf19ik3lGRx34mU4LsVfd+u2iMgtOEoP4OaY0b6YRKPKrPlr+GzbXhqbo/zWdtgbbcCgHpXxY78QdCLC9aeNK55AhpEFC9MSkOao8u9//4R7Xl5eQKk6HkN6JocV8e5m9+6GT95Rn1yWukPeu8Pdb2c8aX2Tx/PaQJJyxsRzyXjyysRyyHj6xAZKHVdJpBQoNIcM68nkEb3Sli+/cMhgDnWzXRpGe8DCtLQR97+2slMplNvOO5CvTNkvbDHaPf/15cPCFsEwOhSmVALy1aP249anPwpbjIIxqEclW3fvAxKG/6DR/btVllp0XcMwfLHlrzzZu6+ZJ96p40dPflgAqYxiceyYPlxwhONIWBIRzjpwIKWmGA0jJ7b81UY8tmAN3//z+2GLYbSQ15Zt5rVlm+PnV04dzY1njQ9RIsPonJhSCchziz8PWwQjD44f25deKfs7wDHil5dEuGrq6BCkMozOjymVgJhS6Ricc/Ag/v1Lh1BVbhsBDSMMzKYSkKbmKOt31HPpzLdYvnF3ASUz2juXHL0f/3LuxHjiMMPoSlg64QwUOp1wUzSaljEQMucz99ZdN+td/nfR+oLIYhSH5b84m5KIKRWj62GG+jZiX1OU/355GVt270vaONcc1U6bW+W560+gxA2mmGnjYrzMp03imIxphRPHsXI3XXGGtMKxNmnpe73908q87SSpLDWopGEYrcOUSkAef7uOXz+fGtm/c3Paf84NWwTDSGLlL8825d/OMUf9gDQ0NoctgmF0aSaP7B22CEYAbKYSkK8ctR/1TVG27N4Xz+lhGG1Br+oyBvao4tjRfbjxrPG2SdPoUJihvhXUbd3DvqYoJRE3wVPECVoIWXKjxP6qJrVRTRj1nWNPO08bfNuk9NXYtYJfY+6STfzn84XLO2IUhrn/7ySG96kOWwyjC2OG+iIytFfb/Ni372lk7tKN8fMd9Y1AciTg7Xsb+eWzlokyG/9y7kS6VZR6oiG7fz1OBF6e/WA9n++sd9skaGhKJKn39on4rO17FTrArvomVm3eE69/5JtTqCkvRYGNOxuo27qHI0f0RiT9RaRPt3IG9UiOCm0Y7R1TKgFobI5y5UMLeeHjDWGLUlTOmDggJUR9wjsLEt5Zqsrf3l/X5vKM6lvDrOlH0b+2MnfjFjAtQ9phwzCCY0olAGN/9GzYIhSMkX1rUFWiClFVJgyqZWCPSlRhvz7VfOPYkURasB/jNxfnbmMYRufHlEoAvnXCqE6T1XHlpt30qSln4U9OC1sUwzA6IaZUAvDMh22/tFNMNu/exwd129OWtZKyJhKzHzjluxuaqG+Mxh0HYkZ/VSfCQLMq0ahSU1HK8N7VNEeVqDsjao4qIs7yle0xMIzOjSmVAKzZsjdsEQrOP/zm1aJf89gxfXj4iqOKfl3DMIqHKZUArPzl2bz48QZue+YjVuQZTHJIzyr611YkXHhdFx/v2340GjvXRJlr81D3b1Sddvuao2zc2VDoWywKN5y+f9giGIbRxphSCYCIcN0f32VnfVPefddu28vabR13pvP6jSczuKe5tRqGEQzb/BiQNVv2MPu9z/hs2964DeLRtz6lKZr98xvWu4qLJ++XtBExMSOJnSfsE7HZTKa6WW99ytY9jS2+jzD5ypTh3HbeQWGLYRhGHljo+wy0xY76QrN3XzM//cuHrN6yJykqrx+xDXyKMm/FluII2ErKSyIsue2ssMUwDCMPbEd9G/HJ+p2c8WuL2puNaYcOZmBtpbMh0p1rCcma8XZPFIBcjmCx6kyvPdm6Zxv72DF9OWZ03+wXNwyjRZhSCcjX738rbBHaPX9597OwRQjE3S8tZ8mtZ1FeaoEaDaPQmFIJyBPfPpajfvlC2GJ0eK47dSzlpZGMATcLQa4l3Smj+phCMYw2wpRKQPp1r+Ck/fvx0icbczc2MnLw0B7xQJx+K1Tpy1bprdKyPnqO1afMjxUbd+VokYhrlq0stpkzVubd3OlXlvV65JdZM7ZRtV/3ikDjG0YxyGmoF5EzgTuBEuA+Vb3dLRfgVuACoBm4R1Xv8ul/E3C52+ZaVZ2TbdyUvlcCV7t9dwHTVXVxtnEzUWxD/Y76Rq6f9S6fbtmTVO6NRut9cCz5PPdDzjD8+P6Z+/PtE8eELYbRSSmooV5ESoC7gdOAOmC+iMx2H+yXAcOA8aoaFZH+Pv0nABcBE4HBwPMiMs6tzjSul0dU9V53rHOBO4AzM42rqu0mPWNtZRm/v+zIVo3x7AfruOrhtwskkdEWjChArhM/9/HYufM3s4t5VVkJ5xw0qNUyGEahyLX8NRlYpqorAERkFjANWAxcBVysqlEAVfWLCz8NmKWqDcBKEVnmjkmWceOo6g7PaQ2J31+mcd/Ifcsdg4/X7+C2Zz4KW4wOx9++cxwHDukRthiG0WXJpVSGAGs853XAFPd4NHChiJwHbMRZglrq039eSv9Y0grfcUXkZmCBqs52z68G/hkoB04OMG4cEZkOTAcYPnx4jlttG5Z+vpMLfvsGjU3RxLp4LGijJHKSRAQ27doXioydiW0ddGOoYXQWWmOorwDqVXWSiHwRmAkc31qBVPWnKed3A3eLyMXAj4FL8xhrBjADHJtKa2VrCc98sL5DPejOmDiAqrISRwEKDO9dzf4DunPY8F70qilLyj4ZU5IxQ7JhGEYupbIWx24SY6hbBs7s4An3+Eng/jz7ZyrPxCzgngDjtiu+e+pYrjh+JEoiQCSeoJGqyrrt9Xzhv4ofNdiPOYs+L9hY+/WpZmBtZZJHVpJm91HzMeuBn/+IAieP789VU0e3KJGYYRhtTy6lMh8YKyIjcR7aFwGxHH9PAScBK4GpwBKf/rOBR0TkDhyD+ljgLZznS6Zx44jIWM+S2jlA7DjTuG3KP979Gu+u2dbWl+k0rN68h9Wb9+RumAcLV2/lpP3706dbOYLj6m2zJMNoP2RVKqraJCLXAHNwXH9nquoit/p24GERuR7H3fcKn/6LROQxHAN8E3B1zEMr07gpNpVrRORUoBHYirv0lW3ctuS9um1tfQkjAGff9UrYIrSYIT2rOOdgx1vL684f9/RKaZ8ozzyDS7RNpFXwa6sZAt4IkrEul1ypV0jqk+H6Xpf61PHPmDiQ0yYM8JXF6BhYQMlWoKrMfu8ztu7eF7dBgGfjnVsgwPrt9cx4ZQX7mqIFlcEwOhsrfnG2LW+2IyygZBEREaYdmuZ0lpEbTh/H8o27iCpEJOb15Xh+RVwFFIlI0k7sJ9+u49//7rey2P449YAB7n05b79N0SjPf+R4mo/qV8Ok/XpREnHuOfY3fv+RhAKOE1fSyQ+YVOUtnnapgSwzKfqUSyTvYE/pm6lttmU3SZE911jZ2ibG9PmM0sZIaevOBlqyQpjPZ5aoC36/qX0QOHRYT1MoHRybqXQSfjd3RYfa1/KNY0fSt3s5ZZEIJRGhrEQSIU+8DTV5Yca7ITBeRvJSS2L5J/277bckk16WfemoED+ZVNlOGt+fiYNtf43R/rB8KhkohFJ5fvHnXPFg2yimsf27MaC20vfhFdtF7S0Dz8M3qSzRbsHqrW0iq9E2rLr9nLBFMIw0bPmrDXlo3uo2G3vphl0s3WDxvzo73z5xdPzYuxR02oSBIUhjGIXHlEoePPCNyWzc2cBNT7xPfWM0vu8kGlui8RyruvtQSKQPbmyO8vH6nQCUlQjHj+1HbPn4lAMGUFaSCMeebQaZsSabZ1AO755UXl22ib+9vy7zgEbe/O6SSebZZHR6TKnkSb/uFdx3aesCRXYEVm7eHbYIBWfyyN5pZcHC78fa5g7Dn63/A6+v4oHXVwVq63v9DI2dFxglGk1ssI1tro1qYpNtUjBKXztSfjaodDdjn1cXDdbOu8SbVOa3CTbFddorp+/ysU87srRLtdcl94s5oiQ7Togbf8nrGOJ11kgul+SxxL9NLKRTar9MY6cSk7mqvIR7vno4g3pU+TcsMKZUAhCNKu+s2cYrSzcypn83aipKaW5W+nQrp1tFqe8XL9UGEmS/QaY2yT+KTHsRMttcUo3b2eSN/TlhbD9OGNuPpZ/v5Od/TQ0e3TF5a+WWsEUwjFD404I6rj1lbFGuZUolAKN++EzYIhgdhMkjersBQ523yEgk8TYZCxwqeAKKum+ksfOI+xociZcT3wO1ctNu3vl0GwCj+9VwzsGD4+7ofi7q4qmLRCT5bVf83a5TXaERHzfl+Hl21+lMb9aJ65PSJ32vV2pyslTZM73JZ7vHVFd18bvH1sjnM3vwlSXHv0HyPDqR7sD78umdzfnlaop9B8b270axMKUSgJ9+YQI3/61zvK0bDrOvOZbayjIg84NRhLT9NCURx/XZKce3zjC6MqZUAvCN40byjeNGhi1G0di8q4FT7/g/tnag6Mr58uQ7a+lTU562vg0Z3m7J9Saa/pYcO/e+/Xrb4NMnyLVjFdlmENnuJ7u82d/U/WXzn00kyZs8RDJF2tWQujHWWxaE0kgkKWUFAgNrKxnVr3izgI6AKRUjja179nVqhQJw/2urwhbB6CS8cMNURptiiWNKxUhjTP/uvhvxNu9q4Ihbnw9BIsPIzdRx/VoUjiYTQvIkqqlZHa+6aMKeMWlEL0b0qSncRTsBplS6MNMfXMDfFxcuf4rRenpWl3H9qePi535xvbyFsSNVZePOBpSUFaaUtprSz+86SeWelrE2MaeAuDeha0Bujir/M281m3cHz2B67SljGdrLcXU9YWw/BvaoDNzXaJ+YUunCLN9oO/jbG9v2NPKz2YtyN+wk3PVCcgZyC1XT8TGl0oV54YYTW9V/d0MTk297nt372jyVTYfj1AP6+5Smv/Wn15CxjdMuvVAE3l2zjXXb6/MTshVEBK6cOjrJIB9V5eE3P2X73oQ9LttylKqTvrq764X3taP2a0uRjSJhSsVoMY+/XWcKxYfKsgjzV21N7DEh9nBNeA55d1HHPMRSd1fHy52uSedJ7UToVV1O75ry+L6E2J6YiAgLCxhYdGBtJT8/dyKVZRHf+imj+sSPvfrEz3NOPI0EYc++Zuat2JzU/4DBtXHXb6NjYErFyMh7a7Zx6f2JLM3bOrlHWKGob4xS39g5k7Gt31HPlf+zsGjXKy+JsOS2s4p2PaP1mFLp5MQCW0bd+FCxAJjNUeX+11ax6LPtRF3r7Sfrd/LplsLmlDeMTBw6rCeVZZHkcEQpoYO+c3JxQosYhcOUSjsgEezPc056OIYYR/3yBZs1GB2ed9dsy9nmkplv5WxTCD659UwqSkuKcq3OjimVFjLz1ZUWusUwOgldJFdhUTCl0kImjegVtgiG0eX57iljOf/woUBqGJpEKBpIDjlTU1Fqxv82xJRKCzl4aM+C+dTPX7WFC+59oyBjdTRO3L8f/zRpWFKZn9dQek2GjYHxOqfkg7ptfPL5zqR1+1TvKTzn3sGS4nbhbZd8HW9orGyxu5Liank6pd5H7HxwzyouOGJYPJFbpoi4STL7xOVKlSPWzy+SrnfMwGNZEE3DgymVVtIcVX79/BLeXLElKThd0EB6MXvJxMG17NnXzMpNTnKs4b2rQzWad5ZNaJZp0TCKiymVgCzbsIu3Vm6J+/7j/l3y+U5mzF1R8OuF7YU14sanQ72+keCBb0xm6rh+YYthGIEwpRKAj9bt4Kw7XwlbDKOLUt9oG0yNjoMplQD0rO7YRr0+NeUo7l6VqFLfFKWmvITTJwxMymWu6iznNasycXAtFxwxLC0rntce4V3HT9r97WmTZjxN2S0OHhuHrc0bRodHtIv40k2aNEkXLFjQqjFUlZE3dZ3Uws9dfwJjB3QPWwzDMEJERBaq6qSg7f0D+CQPeKaIfCIiy0TkRk+5iMhtIrJERD4SkWsz9L/J7fuJiJyRa9yUvhUi8ke3zZsiMiLXuG3Bhh31/O39z7jhsffa8jLthp98YQIPfmOyKRTDMPIm6/KXiJQAdwOnAXXAfBGZraqLgcuAYcB4VY2KSFpYVhGZAFwETAQGA8+LSCxZRKZxvVwObFXVMSJyEfAr4MJM46pqmyw+T/7FC20xbKj86/kH809HDsvd0DAMIw9y2VQmA8tUdQWAiMwCpgGLgauAi1U1CqCqG3z6TwNmqWoDsFJElrljkmXc1P4/d4//DPxGnIX3TOO2yWaP/7l8Cr9+fgkLChjtNWy+//j7fP/x98MWw5faylK+d8b+RESIiFDimU9rUmyoRFnMnfu0CQPo390SPRlGWORSKkOANZ7zOmCKezwaZ9ZwHrARuFZVl/r0n5fSf4h77DuuiNwMLFDV2d7rq2qTiGwH+uQYN46ITAemAwwfPjzHrWbmuLF9OW5s38Dto9FY7K5EDK/YfpSkYxIGcjKUr9q8u8ttjNxR38RP/9KyRFU/evJDAC49ej9+fu5EM/4bRpFpjfdXBVCvqpNE5IvATOD41gqkqj9t7RiesWYAM8Ax1Bdq3FxEInEfqFaP1a97ReCNiM1RJ/pw3JPLjUz82Pw1zFm0nvmr0mdaQ3pWcc3JYyiJSJpi21nfyC+e+Zie1WVcfeIY5xreaMeup1jsurH/mqJK3da9PP9ReKmKH3hjNV87ej/G9De7kGEUk1xKZS2O3STGULcMnNnBE+7xk8D9efbPVO7Xv05ESoEewOYc43ZJ/r5oPdMfyj/Pxdpte7npiQ+yttm2p5HbnvmopaKlURIRSiJCqfu3vrGZxubC6fyIwKPfPMoUimGEQC6lMh8YKyIjcR7aFwEXu3VPAScBK4GpwBKf/rOBR0TkDhyD+ljgLZxX+Ezjpva/FMdW8iXgRVVVEck0bpflkGE9wxYhMLEZzb42Gj+qcOGMeUllf77yaCaN6N1GVzQMI0ZWpeLaMa4B5gAlwExVjS123w48LCLXA7uAK3z6LxKRx3AM8E3A1TEPrUzjpthUfg885Brit+Aon6zjdlUG1FbmFa/rvTXbWL+jntg+JVWYt2Iz3SpLGdGnJr4JsrayjNqqMqLumlhUvZslkzdOJm2gdJfBmqNRmqLKx+t28scFa3JI1XZ8ybVLvfS9ExnZtyY0OQyjs2ObH/Pgsflr2q3HlBGMN246mUE9qsIWwzA6DPlufrQwLQH5yVMf8tC81WGLYbSQaYcO5s6LDgtbDMPo9JhSCYgplI7N0++v4/+WbPSNY4Ynf0hSbLOkMk/CJ8ncJjm3SvZ4aMkypMdGA3ivbnvW++pdU86lR4+In8f26wiSlIohU1lQYgsaIsGzJAZqlm3glFhzSf8+4v3sk+sG96zinIMGmTt5SNjyV0C27dnHxb97k8XrdiSPu18v302Rw3pXMaSns8zizT8fc9uFxI88qn556RO56wHKSyOcOXFg3F05279b8gZBzVLXsn5vLN/Mq8s2Zby+YYTNMaP7xPeWBXnE5fsc9Guea4TxA7tz+sSBeV2nPZDv8pcplQDsbmjimQ/W0a97BeUlEZrVNUI3O8Zs5yNMGLzTNjyS+NKu3LSbXz+fuke0eHx58nBqq0rjvwDvv77XaB+r895HjHfXbOPdNduKIa5hdCpeuGEqo/t1C1uMvDCbShsw8WdzwhahYDz61qdUlDpxT9JS0iaVxc7d2pQQ+D2ry3zD15OyfOO3pJO0dFGgZSSvDH5jepdSEm1Ty8RzvUSZd0wR+GjdTjbtagjwaReOCYNqGdWvxkdm/zdkVadNdXkppZH01MExMi0QZVs6yjyWf0XQayenScgwVkahssviN1zss8u1SJZrFS3Tfaf2PWBQbYdTKC3BlEob8h8XHMKgHpWIiJMxMuJ8/RqbNX4eidWJ88OPxbuKRIjXgfNXUtrGzsWtj+VIz/TgLC2J0K3C/skNw2g77AmTg4/X78jdKAM3/Om9AkoSDjdPm8glHkOwYRhGNnLmU+nqVJaWcMzoPmGLERoTB/cIWwTDMDoQNlPJwYi+NTzyzaPCFsMwDKNDYDMVwzAMo2CYUjEMwzAKhikVwzAMo2CYUjEMwzAKhikVwzAMo2CYUjEMwzAKhikVwzAMo2CYUjEMwzAKRpeJUiwiG4HVrRiiL9DR4r2bzMWjI8ptMheHjigzJOTeT1X7Be3UZZRKaxGRBfmEf24PmMzFoyPKbTIXh44oM7Rcblv+MgzDMAqGKRXDMAyjYJhSCc6MsAVoASZz8eiIcpvMxaEjygwtlNtsKoZhGEbBsJmKYRiGUTBMqRiGYRgFw5SKBxE5U0Q+EZFlInKjT32FiPzRrX9TREaEIGYaAeT+ZxFZLCLvi8gLIrJfGHKmyJRVZk+780VERSR0l8wgMovIP7mf9SIReaTYMvoR4PsxXEReEpF33O/I2WHI6ZFnpohsEJEPM9SLiNzl3s/7InJ4sWX0I4DcX3Hl/UBEXheRQ4oto49MWWX2tDtSRJpE5Es5B1VV+8+xK5UAy4FRQDnwHjAhpc23gXvd44uAP3YQuU8Cqt3jq8KWO4jMbrvuwFxgHjCpvcsMjAXeAXq55/07yPdjBnCVezwBWBWyzCcAhwMfZqg/G3gWEOAo4M2wP+eAch/j+W6c1R7kziWz5zv0IvAM8KVcY9pMJcFkYJmqrlDVfcAsYFpKm2nAA+7xn4FTRESKKKMfOeVW1ZdUdY97Og8YWmQZUwnyWQPcAvwKqC+mcBkIIvM3gbtVdSuAqm4osox+BJFbgVr3uAfwWRHlS0NV5wJbsjSZBjyoDvOAniIyqDjSZSaX3Kr6euy7Qfv4HQb5rAG+AzwOBPo+m1JJMARY4zmvc8t826hqE7Ad6FMU6TITRG4vl+O85YVJTpndJY1hqvp0MQXLQpDPeRwwTkReE5F5InJm0aTLTBC5fw58VUTqcN5Gv1Mc0VpMvt/59kh7+B3mRESGAOcB9wTtU9p24hjtDRH5KjAJmBq2LNkQkQhwB3BZyKLkSynOEtiJOG+hc0XkIFXdFqZQAfgy8AdV/Q8RORp4SEQOVNVo2IJ1RkTkJBylclzYsgTg18APVDUadFHGlEqCtcAwz/lQt8yvTZ2IlOIsFWwujngZCSI3InIq8CNgqqo2FEm2TOSSuTtwIPCy+0UeCMwWkXNVdUHRpEwmyOdch7NO3gisFJElOEpmfnFE9CWI3JcDZwKo6hsiUokTTLA9LN/5Eeg73x4RkYOB+4CzVDXsZ0cQJgGz3N9hX+BsEWlS1acydbDlrwTzgbEiMlJEynEM8bNT2swGLnWPvwS8qK4lK0Ryyi0ihwG/Bc5tJ+v8WWVW1e2q2ldVR6jqCJz15zAVCgT7fjyFM0tBRPriLIetKKKMfgSR+1PgFAAROQCoBDYWVcr8mA1c4nqBHQVsV9V1YQuVCxEZDjwBfE1Vl4QtTxBUdaTnd/hn4NvZFArYTCWOqjaJyDXAHBxvh5mqukhEbgYWqOps4Pc4SwPLcIxbF4UnsUNAuf8N6Ab8yX3j+FRVz23nMrcrAso8BzhdRBYDzcD/C/ttNKDcNwC/E5HrcYz2l4X5siQij+Io576unednQBmAqt6LY/c5G1gG7AG+Ho6kyQSQ+6c4Ntj/dn+HTRpy9OIAMuc/Zvgv2oZhGEZnwZa/DMMwjIJhSsUwDMMoGKZUDMMwjIJhSsUwDMMoGKZUDMMwOiBBg0HmMd6/uoFQP3IDdrYoBJUpFcMwjI7JH3A3rbYWETkGOBY4GGfj8ZG0MPKGKRXDMIwOiF8wSBEZLSL/KyILReQVERkfdDicTa/lQAXOXpXPWyKXKRXDMIzOwwzgO6p6BPA94L+DdFLVN4CXgHXuf3NU9aOWCGA76g3DMDoBItINJ2fLnzzmkAq37ovAzT7d1qrqGSIyBjiARDj+50TkeFV9JV85TKkYhmF0DiLANlU9NLVCVZ/AiTuWifOAeaq6C0BEngWOBvJWKrb8ZRiG0QlQ1R040bEvgHja5aApiz8FpopIqYiU4RjpW7T8ZUrFMAyjA+IGg3wD2F9E6kTkcuArwOUi8h6wCP+Mqn78GSft9Ac4KaffU9W/tkguCyhpGIZhFAqbqRiGYRgFw5SKYRiGUTBMqRiGYRgFw5SKYRiGUTBMqRiGYRgFw5SKYRiGUTBMqRiGYRgF4/8D/3M/1MZcAnoAAAAASUVORK5CYII=\n",
"text/plain": [
"