1. Each line of code must be commented.2. Choose appropriate model.3. Need to convert in time series before model building.4. Use meaningful plots, charts, graph etc.5. Need to provide report as well...

1 answer below »
1. Each line of code must be commented.2. Choose appropriate model.3. Need to convert in time series before model building.4. Use meaningful plots, charts, graph etc.5. Need to provide report as well with clean and readable.6. I would advice to choose Holt-Winters or ARMIA depends on the problem.7. Only interested in MEL-SYD, and only in revenue.
Note:- Before start working please read the specification properly, do not submit wrong or unclear answer.
Note 2: If you face any sort of problem please please contact me, do not assume and do wrong work.
Note 3: If possible please use R Markdown to solve this task.




Data Modelling Brief The Bureau of Infrastructure, Transport and Regional Economics (BITRE) publishes monthly air travel statistics between various cities. Your task is to build a model for predicting the passenger traffic between Melbourne and Sydney using this data. This model should predict the volume of revenue passengers for each month in 2019. When building this model, please keep in mind the following: · We are only concerned with the revenue passenger traffic. · We are only concerned with traffic from Melbourne (MEL) to Sydney (SYD). · Air traffic can be highly seasonal in nature and comparisons are often made in comparison with a similar period in the previous year. Your solution should: 1. Load the source data. 2. Build a model that is appropriate for these data. 3. Use the model to forecast the revenue passengers between Melbourne (MEL) and Sydney (SYD) for each month in 2019 and print this forecast to the console (stdout). Your Solution We prefer your solution to be written in Python but you may use another programming language/environment if you wish. You are free to use any libraries as you see fit. Solutions in Excel (or other spreadsheet tools) will not be accepted. You are encouraged to run and test your solution before submitting it; to do so, you can obtain a Python environment by installing WinPython, use an online environment such as repl.it/languages/python or use any other Python environment of your choosing. You may spend as much time as you need on this exercise, but we would prefer you to not spend more than 1-2 hours. The deliverable for this exercise is a single source file (.py, .ipynb or equivalent for other languages) or a Zip file if your solution has multiple source files. We will be assessing your solution by: · Your ability to interpret and manipulate data; · Your ability to apply a principled and mathematically rigorous approach to solving a data science problem; and · Your ability to write clear, concise and readable code. Top Routes City Pair OriginCity Pair DestinationYearMonthRev PassengersAircraft Trips (a)Rev Passengers LF %Distance (Km)RPKsASKsSeats ABXSYD2014719,74758965.84528,925,64413,563,16430,007 ABXSYD2014821,08557369.24529,530,42013,775,60430,477 ABXSYD2014920,13853667.54529,102,37613,487,68029,840 ABXSYD20141020,62054567.94529,320,24013,724,98030,365 ABXSYD20141119,51650869.24528,821,23212,753,63228,216 ABXSYD20141217,34747963.34527,840,84412,394,74427,422 ABXSYD2015115,44540663.74526,981,14010,961,90424,252 ABXSYD2015215,34345659.24526,935,03611,723,07225,936 ABXSYD2015319,49653265.94528,812,19213,379,20029,600 ABXSYD2015417,56247865.04527,938,02412,216,20427,027 ABXSYD2015518,20752962.64528,229,56413,136,02429,062 ABXSYD2015617,26750062.94527,804,68412,414,18027,465 ABXSYD2015719,08454264.64528,625,96813,353,88829,544 ABXSYD2015819,72253367.14528,914,34413,279,76029,380 ABXSYD2015918,47152463.94528,348,89213,057,37628,888 ABXSYD20151019,48953166.44528,809,02813,257,61229,331 ABXSYD20151118,86450867.24528,526,52812,688,54428,072 ABXSYD20151218,01547066.84528,142,78012,196,31626,983 ABXSYD2016116,00738767.04527,235,16410,795,56823,884 ABXSYD2016216,46148761.04527,440,37212,203,54826,999 ABXSYD2016319,48651967.54528,807,67213,056,02028,885 ABXSYD2016419,15552266.14528,658,06013,103,02828,989 ABXSYD2016519,27856163.84528,713,65613,657,63230,216 ABXSYD2016617,76652961.74528,030,23213,020,31228,806 ABXSYD2016719,59954866.84528,858,74813,268,46029,355 ABXSYD2016820,12657465.34529,096,95213,923,40830,804 ABXSYD2016920,21854968.14529,138,53613,417,16829,684 ABXSYD20161019,71754766.34528,912,08413,450,16429,757 ABXSYD20161119,11054066.04528,637,72013,079,52428,937 ABXSYD20161218,21951063.14528,234,98813,051,95228,876 ABXSYD2017115,26742259.24526,900,68411,652,56025,780 ABXSYD2017215,20249056.94526,871,30412,084,22026,735 ABXSYD2017320,07256065.84529,072,54413,782,38430,492 ABXSYD2017419,43850669.24528,785,97612,697,58428,092 ABXSYD2017519,32554465.24528,734,90013,405,41629,658 ABXSYD2017618,13250165.34528,195,66412,554,75227,776 ABXSYD2017720,38053769.44529,211,76013,269,81629,358 ABXSYD2017820,16456166.24529,114,12813,772,89230,471 ABXSYD2017919,60449873.44528,861,00812,072,01626,708 ABXSYD20171019,73849574.54528,921,57611,980,71226,506 ABXSYD20171119,17550071.24528,667,10012,170,10026,925 ABXSYD20171217,52844070.64527,922,65611,227,22824,839 ABXSYD2018115,53237869.64527,020,46410,083,21622,308 ABXSYD2018215,10941666.14526,829,26810,334,98022,865 ABXSYD2018318,92148770.64528,552,29212,116,31226,806 ABXSYD2018418,26645571.14528,256,23211,607,36025,680 ABXSYD2018518,95551467.14528,567,66012,771,71228,256 ABXSYD2018618,46447969.94528,345,72811,931,89626,398 ABXSYD2018720,62250272.94529,321,14412,791,60028,300 ABXSYD2018821,41053572.74529,677,32013,316,82429,462 ABXSYD2018919,98350272.24529,032,31612,502,77227,661 ABXSYD20181021,26053772.54529,609,52013,259,87229,336 ABXSYD20181119,79850472.74528,948,69612,311,57627,238 ABXSYD20181218,02044571.94528,145,04011,332,54425,072 ABXSYD2019115,65438468.34527,075,60810,365,71622,933 ABXSYD2019215,69444963.44527,093,68811,180,22024,735 ABXSYD2019319,33353766.64528,738,51613,119,75229,026 ABXSYD2019419,01549769.94528,594,78012,300,27627,213 ABXSYD2019519,77154267.74528,936,49213,200,20829,204 ABXSYD2019618,09448369.14528,178,48811,836,52426,187 ABXSYD2019720,91054171.14529,451,32013,296,03229,416 ABXSYD2019821,38052575.04529,663,76012,892,39628,523 ABXSYD2019920,19452172.74529,127,68812,556,56027,780 ABXSYD20191021,47953474.04529,708,50813,126,08029,040 ABXSYD20191120,65452573.34529,335,60812,744,14028,195 ABXSYD20191217,97146070.94528,122,89211,456,84425,347 ABXSYD2020112,66532368.44525,724,5808,372,39618,523 ABXSYD2020215,54645964.14527,026,79210,958,74024,245 ABXSYD2020312,14043552.64525,487,28010,427,18823,069 ABXSYD202043144116.2452141,928877,7841,942 ABXSYD202054163323.7452188,032793,7121,756 ABXSYD20206Data not available for release.452 ABXSYD20207Data not available for release.452 ABXSYD20208Data not available for release.452 ABXSYD20209Data not available for release.452 ABXSYD202010Data not available for release.452 ABXSYD202011Data not available for release.452 ABXSYD202012Data not available for release.452 ABXSYD20211Data not available for release.452 ADLASP20153Data not available for release.1,316 ADLASP2015410,7149870.31,31614,099,62420,042,68015,230 ADLASP201558,5269657.11,31611,220,21619,643,93214,927 ADLASP201569,8469467.51,31612,957,33619,184,64814,578 ADLASP2015712,4809881.71,31616,423,68020,100,58415,274 ADLASP2015810,9329673.21,31614,386,51219,661,04014,940 ADLASP2015910,5119372.91,31613,832,47618,974,08814,418 ADLASP20151011,0389673.81,31614,526,00819,692,62414,964 ADLASP20151110,3679470.91,31613,642,97219,232,02414,614 ADLASP2015129,2669860.41,31612,194,05620,172,96415,329 ADLASP201618,3089456.71,31610,933,32819,297,82414,664 ADLASP201628,1099256.51,31610,671,44418,871,44014,340 ADLASP2016310,2219866.51,31613,450,83620,219,02415,364 ADLASP201649,5009265.91,31612,502,00018,958,29614,406 ADLASP201659,7519763.51,31612,832,31620,208,49615,356 ADLASP2016610,3709668.41,31613,646,92019,963,72015,170 ADLASP2016711,7199379.51,31615,422,20419,408,36814,748 ADLASP2016810,2079865.41,31613,432,41220,537,49615,606 ADLASP2016911,1279474.51,31614,643,13219,661,04014,940 ADLASP20161011,5819676.01,31615,240,59620,061,10415,244 ADLASP20161110,2999469.01,31613,553,48419,642,61614,926 ADLASP2016129,5229960.11,31612,530,95220,858,60015,850 ADLASP201718,8369459.41,31611,628,17619,562,34014,865 ADLASP201728,1268858.81,31610,693,81618,179,22413,814 ADLASP2017310,2899866.01,31613,540,32420,501,96415,579 ADLASP2017410,7059372.31,31614,087,78019,487,32814,808 ADLASP201759,4139859.91,31612,387,50820,663,83215,702 ADLASP2017610,2809468.61,31613,528,48019,725,52414,989 ADLASP2017712,0949679.01,31615,915,70420,134,80015,300 ADLASP2017810,9509869.91,31614,410,20020,608,56015,660 ADLASP2017911,05210674.91,31614,544,43219,407,05214,747 ADLASP20171012,08911376.71,31615,909,12420,753,32015,770 ADLASP20171110,90311371.11,31614,348,34820,172,96415,329 ADLASP2017129,72911064.11,31612,803,36419,988,72415,189 ADLASP201819,91111563.51,31613,042,87620,551,97215,617 ADLASP201829,19010266.81,31612,094,04018,104,21213,757 ADLASP2018310,85111271.01,31614,279,91620,121,64015,290 ADLASP2018410,75910671.91,31614,158,84419,680,78014,955 ADLASP2018510,08011761.61,31613,265,28021,550,81616,376 ADLASP2018610,25910968.51,31613,500,84419,721,57614,986 ADLASP2018712,66111181.01,31616,661,87620,567,76415,629 ADLASP2018811,39211671.41,31614,991,87221,008,62415,964 ADLASP2018911,17710974.01,31614,708,93219,866,33615,096 ADLASP20181012,50411479.91,31616,455,26420,604,61215,657 ADLASP20181111,08610874.11,31614,589,17619,678,14814,953 ADLASP20181210,42411565.91,31613,717,98420,812,54015,815 ADLASP2019110,28111566.61,31613,529,79620,329,56815,448 ADLASP201929,46310466.11,31612,453,30818,829,32814,308 ADLASP2019311,04311867.91,31614,532,58821,417,90016,275 ADLASP2019414,06212478.11,31618,505,59223,680,10417,994 ADLASP2019512,74412373.41,31616,771,10422,847,07617,361 ADLASP2019612,99511779.61,31617,101,42021,488,96416,329 ADLASP2019714,61012682.01,31619,226,76023,435,32817,808 ADLASP2019812,77612275.41,31616,813,21622,293,04016,940 ADLASP2019912,78111877.51,31616,819,79621,708,73616,496 ADLASP20191013,35512378.91,31617,575,18022,279,88016,930 ADLASP20191111,05311876.91,31614,545,74818,918,81614,376 ADLASP2019129,46612064.51,31612,457,25619,324,14414,684 ADLASP202018,61811361.91,31611,341,28818,335,82813,933 ADLASP202028,50511457.11,31611,192,58019,592,60814,888 ADLASP202037,15211446.21,3169,412,03220,388,78815,493 ADLASP20204Data not available for release.1,316 ADLASP20205COVID19 No flights1,316 ADLASP20206COVID19 No flights1,316 ADLASP20207Data not available for release.1,316 ADLASP20208Data not available for release.1,316 ADLASP20209Data not available for release.1,316 ADLASP2020109,39012962.01,31612,357,24019,920,29215,137 ADLASP202011Data not available for release.1,316 ADLASP202012Data not available for release.1,316 ADLASP202118,61812656.31,31611,341,28820,128,22015,295 ADLBNE2014767,50654878.81,622109,494,732138,867,53085,615 ADLBNE2014863,66354174.51,622103,261,386138,556,10685,423 ADLBNE2014964,77953976.11,622105,071,538138,067,88485,122 ADLBNE20141076,65856685.11,622124,339,276146,155,17690,108 ADLBNE20141164,67952677.21,622104,909,338135,964,15083,825 ADLBNE20141270,93655879.91,622115,058,192144,087,12688,833 ADLBNE2015166,18655175.61,622107,353,692142,058,00487,582 ADLBNE2015254,44249769.01,62288,304,924127,914,16478,862 ADLBNE2015366,11056174.31,622107,230,420144,401,79489,027 ADLBNE2015467,74454079.41,622109,880,768138,307,94085,270 ADLBNE2015562,59053175.41,622101,520,980134,619,51282,996 ADLBNE2015657,22352270.01,62292,815,706132,583,90281,741 ADLBNE2015771,07357078.71,622115,280,406146,404,96490,262 ADLBNE2015864,03655573.01,622103,866,392142,255,88887,704 ADLBNE2015964,99354176.21,622105,418,646138,280,36685,253 ADLBNE20151074,57756582.61,622120,963,894146,370,90290,241 ADLBNE20151170,47058674.41,622114,302,340153,582,31494,687 ADLBNE20151273,36660376.41,622118,999,652155,793,10096,050 ADLBNE2016169,28058873.11,622112,372,160153,751,00294,791 ADLBNE2016259,09456165.81,62295,850,468145,686,41889,819 ADLBNE2016371,28259174.91,622115,619,404154,461,43895,229 ADLBNE2016470,03655576.71,622113,598,392148,127,52891,324 ADLBNE2016564,52253074.81,622104,654,684139,944,53886,279 ADLBNE2016661,14650373.61,62299,178,812134,687,63683,038 ADLBNE2016776,16457180.51,622123,538,008153,460,66494,612 ADLBNE2016867,35157271.41,622109,243,322153,029,21294,346 ADLBNE2016969,61156075.21,622112,909,042150,129,07692,558 ADLBNE20161078,04858879.41,622126,593,856159,371,23298,256 ADLBNE20161171,13258774.91,622115,376,104154,026,74294,961 ADLBNE20161272,66957877.91,622117,869,118151,280,69693,268 ADLBNE2017171,29354578.81,622115,637,246146,766,67090,485 ADLBNE2017256,91050269.21,62292,308,020133,355,97482,217 ADLBNE2017370,15959672.11,622113,797,898157,807,62497,292 ADLBNE2017470,94156076.61,622115,066,302150,221,53092,615 ADLBNE2017565,73053575.71,622106,614,060140,890,16486,862 ADLBNE2017660,99551672.41,62298,933,890136,658,36684,253 ADLBNE2017775,67156580.91,622122,738,362151,718,63693,538 ADLBNE2017867,86555974.51,622110,077,030147,765,82291,101 ADLBNE2017973,23455879.21,622118,785,548149,929,57092,435 ADLBNE20171082,34259582.61,622133,558,724161,674,47299,676 ADLBNE20171174,97458276.81,622121,607,828158,282,87097,585 ADLBNE20171279,52959778.81,622128,996,038163,661,422100,901 ADLBNE2018172,11556575.61,622116,970,530154,767,99695,418 ADLBNE2018260,63750571.21,62298,353,214138
Answered 2 days AfterMar 12, 2022

Answer To: 1. Each line of code must be commented.2. Choose appropriate model.3. Need to convert in time series...

Mohd answered on Mar 13 2022
124 Votes
-
-
-
3/12/2022
Each line of code must be commented.2. Choose appropriate model.3. Need to conve
rt in time series before model building.4. Use meaningful plots, charts, graph etc.5. Need to provide report as well with clean and readable.6. I would advice to choose Holt-Winters or ARMIA depends on the problem.7. Only interested in MEL-SYD, and only in revenue.
#install.packages("rCharts")
library(readr)
library(magrittr)
library(dplyr)
library(ggplot2)
library(rmarkdown)
library(forecast)
library(plyr)
library(xtable)
library(base64enc)
library(knitr)
library(data.table)
library(Rcpp)
importing data
library(readxl)
toproutes<- read_excel("New folder (2)/toproutesjuly2014jan2021.xlsx")
View(toproutes)
Renaming variable
toproutes<-rename(toproutes,c("City Pair Origin"="City_pair_origin"))
toproutes<-rename(toproutes,c("City Pair Destination"="City_pair_destination"))
Filtering observation with MEL as origin...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here