1) Design a 2-bit comparator using combinational logic, and Karnaugh Maps. The inputs of the circuit are two 2-bit numbers. Construct the truth table given 2-bits inputs A and B, and the 3 outputs :=...

1 answer below »
1) Design a 2-bit comparator using combinational logic, and Karnaugh Maps. The inputs of the circuit are two 2-bit numbers.


  1. Construct the truth table given 2-bits inputs A and B, and the 3 outputs := {=, >,

  2. ) Construct the correct K-Map

  3. Apply the K-Map to the minterms

  4. Apply the K-Map to the maxterms

  5. Prove that the expressions found on c and d are equal

  6. Construct the resulting circuit




Document Preview:

1) Design a 2-bit comparator using combinational logic, and Karnaugh Maps. The inputs of the circuit are two 2-bit numbers. Construct the truth table given 2-bits inputs A and B, and the 3 outputs := {=, >, <}>






1) Design a 2-bit comparator using combinational logic, and Karnaugh Maps. The inputs of the circuit are two 2-bit numbers. a) Construct the truth table given 2-bits inputs A and B, and the 3 outputs := {=, >, <} b) ) construct the correct k-map c) apply the k-map to the minterms d) apply the k-map to the maxterms e) prove that the expressions found on c and d are equal f) construct the resulting circuit b)="" )="" construct="" the="" correct="" k-map="" c)="" apply="" the="" k-map="" to="" the="" minterms="" d)="" apply="" the="" k-map="" to="" the="" maxterms="" e)="" prove="" that="" the="" expressions="" found="" on="" c="" and="" d="" are="" equal="" f)="" construct="" the="" resulting="">
Answered Same DayDec 21, 2021

Answer To: 1) Design a 2-bit comparator using combinational logic, and Karnaugh Maps. The inputs of the circuit...

David answered on Dec 21 2021
112 Votes
1)
Design a 2-bit comparator using combinational logic, and Karnaugh Maps. The inputs of the circuit are two 2-bit numbers.
a) Construct the truth tabl
e given 2-bits inputs A and B, and the 3 outputs := {=, >, <}
Truth Table for two 2-bit inputs A and B and corresponding comparator outputs
     A B
A1A0 B1B0
    
    F(A > B)
    F(A = B)
    F(A < B)
    00
    00
    0
    1
    0
    00
    01
    0
    0
    1
    00
    10
    0
    0
    1
    00
    11
    0
    0
    1
    01
    00
    1
    0
    0
    01
    01
    0
    1
    0
    01
    10
    0
    0
    1
    01
    11
    0
    0
    1
    10
    00
    1
    0
    0
    10
    01
    1
    0
    0
    10
    10
    0
    1
    0
    10
    11
    0
    0
    1
    11
    00
    1
    0
    0
    11
    01
    1
    0
    0
    11
    10
    1
    0
    0
    11
    11
    0
    1
    0
b) Construct the correct K-Map
K-map for F(A > B)
    A1A0
B1B0
    00
    01
    11
    10
    00
    0
    1
    1
    1
    01
    0
    0
    1
    1
    11
    0
    0
    0
    0
    10
    0
    0
    1
    0
K-map for F(A = B)
    A1A0
B1B0
    00
    01
    11
    10
    00
    1
    0
    0
    0
    01
    0
    1
    0
    0
    11
    0
    0
    1
    0
    10
    0
    0
    0
    1
K-map for F(A < B)
    A1A0
B1B0
    00
    01
    11
    10
    00
    0
    0
    0
    0
    01
    1
    0
    0
    0
    11
    1
    1
    0
    1
    10
    1
    1
    0
    0
c) Apply the K-Map to the minterms, which considers function output equals to “1”
Ab0 – represents bar (inverted version) of A0
Ab1 – represents bar (inverted version) of A1
Bb0 – represents bar (inverted version) of B0
Bb1 – represents bar (inverted version) of B1
Applying K-map minimization to minterms for A >...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here