1. Define a relation R on the set of all integers Z by x R y iff x – y = 3k for some integer k. Verify that R is an equivalence relation and describe the equivalence class E5. How many distinct equivalence classes are there?
2. Define a relation R on the set of all integers Z by x R y iff x + y = 2k for some integer k. Is R an equivalence relation on Z? Why or why not? (Compare with Exercise 23.)
Exercise 23
Define a relation R on the set of all integers Z by x R y iff x – y = 2k for some integer k. Verify that R is an equivalence relation and describe the equivalence class E5. How many distinct equivalence classes are there?
Already registered? Login
Not Account? Sign up
Enter your email address to reset your password
Back to Login? Click here