0, y 2 0, z 2 0, have been omitted from the answers.) Donot attempt to solve it!The Flustard is an animal that eats three foods: squerps, fleebs, and blurds. A squerpcosts $8 and provides 26 mg...


Formulate the following word problem as a linear programming problem. (Note that<br>the natural constraints r > 0, y 2 0, z 2 0, have been omitted from the answers.) Do<br>not attempt to solve it!<br>The Flustard is an animal that eats three foods: squerps, fleebs, and blurds. A squerp<br>costs $8 and provides 26 mg (milligrams) of mertle, 15 mg of perkle, and 29 mg of<br>kerple. A fleeb costs $5 and provides 6 mg of mertle, 21 mg of perkle, and 9 mg of<br>kerple. A blurd costs $3 and provides 21 mg of mertle, 17 mg of perkle, and 25 mg of<br>kerple. The Flustard needs at least 0.7 g (grams) of mertle, 1.3 g of perkle, and 1 g of<br>kerple every day to live. What's the cheapest way to feed your pet Flustard for one<br>day? Use the variables<br># squerps<br>= # fleebs<br>= # blurds.<br>(Note: 1 g. = 1000 mg.)<br>minimize 700x + 1300y + 1000z<br>subject to the constraints<br>minimize 8x+ 5y + 3z<br>subject to the constraints<br>26x + 6y + 21z > 8<br>15x + 21y + 17z > 5<br>29x + 9y + 25z > 3<br>26x + 6y + 21z < 700<br>15x + 21y + 17z < 1300<br>29x + 9y + 25z < 1000<br>(A)<br>(B)<br>minimize 700x + 1300y + 1000z<br>subject to the constraints<br>maximize 8x + 5y + 3z<br>subject to the constraints<br>26x + 6y + 21z < 8<br>15x + 21y + 17z < 5<br>29x + 9y + 25z < 3<br>26x + 6y + 21lz > 700<br>15x + 21y + 17z > 1300<br>29x + 9y + 25z > 1000<br>(D)<br>maximize 700x+ 1300y+ 1000z<br>subject to the constraints<br>+ 5y + 3z<br>subject to the constraints<br>maximize<br>26x + 6y + 21z < 8<br>15x + 21y + 17z < 5<br>29x + 9y + 25z < 3<br>26x + 6y + 21z < 700<br>15x + 21y + 17z < 1300<br>29x + 9y + 25z < 1000<br>(E)<br>(F)<br>maximize 700r+1300y+ 1000z<br>minimize 8x+5y + 3z<br>subject to the constraints<br>subject to the constraints<br>26x + 6y + 21z > 8<br>15x + 21y + 17z > 5<br>29x + 9y + 25z 2 3<br>26x + 6y + 21lz > 700<br>15x + 21y + 17z 2 1300<br>29x + 9y + 25z > 1000<br>(H)<br>

Extracted text: Formulate the following word problem as a linear programming problem. (Note that the natural constraints r > 0, y 2 0, z 2 0, have been omitted from the answers.) Do not attempt to solve it! The Flustard is an animal that eats three foods: squerps, fleebs, and blurds. A squerp costs $8 and provides 26 mg (milligrams) of mertle, 15 mg of perkle, and 29 mg of kerple. A fleeb costs $5 and provides 6 mg of mertle, 21 mg of perkle, and 9 mg of kerple. A blurd costs $3 and provides 21 mg of mertle, 17 mg of perkle, and 25 mg of kerple. The Flustard needs at least 0.7 g (grams) of mertle, 1.3 g of perkle, and 1 g of kerple every day to live. What's the cheapest way to feed your pet Flustard for one day? Use the variables # squerps = # fleebs = # blurds. (Note: 1 g. = 1000 mg.) minimize 700x + 1300y + 1000z subject to the constraints minimize 8x+ 5y + 3z subject to the constraints 26x + 6y + 21z > 8 15x + 21y + 17z > 5 29x + 9y + 25z > 3 26x + 6y + 21z < 700="" 15x="" +="" 21y="" +="" 17z="">< 1300="" 29x="" +="" 9y="" +="" 25z="">< 1000="" (a)="" (b)="" minimize="" 700x="" +="" 1300y="" +="" 1000z="" subject="" to="" the="" constraints="" maximize="" 8x="" +="" 5y="" +="" 3z="" subject="" to="" the="" constraints="" 26x="" +="" 6y="" +="" 21z="">< 8="" 15x="" +="" 21y="" +="" 17z="">< 5="" 29x="" +="" 9y="" +="" 25z="">< 3="" 26x="" +="" 6y="" +="" 21lz=""> 700 15x + 21y + 17z > 1300 29x + 9y + 25z > 1000 (D) maximize 700x+ 1300y+ 1000z subject to the constraints + 5y + 3z subject to the constraints maximize 26x + 6y + 21z < 8="" 15x="" +="" 21y="" +="" 17z="">< 5="" 29x="" +="" 9y="" +="" 25z="">< 3="" 26x="" +="" 6y="" +="" 21z="">< 700="" 15x="" +="" 21y="" +="" 17z="">< 1300="" 29x="" +="" 9y="" +="" 25z="">< 1000="" (e)="" (f)="" maximize="" 700r+1300y+="" 1000z="" minimize="" 8x+5y="" +="" 3z="" subject="" to="" the="" constraints="" subject="" to="" the="" constraints="" 26x="" +="" 6y="" +="" 21z=""> 8 15x + 21y + 17z > 5 29x + 9y + 25z 2 3 26x + 6y + 21lz > 700 15x + 21y + 17z 2 1300 29x + 9y + 25z > 1000 (H)
Jun 04, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here