--- title: "Stat 405/705 HW 5" author: "James Johndrow" output: html_document: default pdf_document: default --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) if (!require('pacman'))...

1 answer below »
Check the file


--- title: "Stat 405/705 HW 5" author: "James Johndrow" output: html_document: default pdf_document: default --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) if (!require('pacman')) {install.packages('pacman')} rm(list=ls(all=T)) ``` ## Directions If in a question I refer to a function that we have not seen in class, then use the help facility in R or Google to find out about it. Insert your answers and the R code you used to generate them, beneath each question. If there is no R code chunk present, create one. **Submit your solutions to canvas -- both the R markdown file and the html file. I strongly suggest checking as you go that your file knits. If you cannot knit, submit just the Rmd. ** This assignment will focus on computing various aspects of the operations of a charter air cargo business with stochastic order origination. Your business owns 30 planes, all of which are identical and travel at identical speeds (800 km/h; you may neglect variation in speed during takeoff and landing). The way your business works is that one or several customers charter a cargo flight to bring their goods from one city to another. As such, a major aspect of your operation is to optimize the movement of your cargo planes from their current location to airports where an order is waiting to be picked up. We will use simulations to compute things like the average time it takes to complete a delivery, including the time it takes to fly from the current location to the airport of origin for the shipment, the time to load the shipment, the time it takes to fly to the destination city, and the time it takes to unload the shipment. # Question 1: In this question we'll assemble a dataset you need. ## Part a (5 pts) There are two data files on canvas: airport.csv and airport-codes.csv. Read them both in using read.csv as dataframes `cargo` and `locs`, respectively. ```{r} ``` ## Part b (5 pts) Cargo contains data on the 50 busiest cargo airports in the US. For the purposes of this exercise we'll assume that you only fly between these airports. locs contains information on the geolocation (lat,lon) of most airports worldwide. We only need this latter dataset to get the geolocations of the 50 airports where we fly into our airport data frame. Use `merge` to add a column to cargo that contains the geolocation of each airport. You can use the IATA code as key variable. ```{r} ``` ## Part c (10 pts) Something has gone slightly wrong with your merge. One of the observations has been duplicated. Identify the airport that has been duplicated. Now print the iata code and the coordinates of the two entries for this airport, and remedy the problem by removing the observation with the larger value of the latitude coordinate (you can do this "by inspection"). ```{r} ``` Now explain in two sentences why this duplication occurred and how you know. **Answer**: ## Part d (5 pts) Coerce the variable iata_code in cargo to character. Sort the resulting data frame by rank (the rank, in ascending order, of the airport in terms of the total number of tons of cargo that pass through it each year), and print the top 5 (i.e. these are the 5 busiest) ```{r} ``` # Question 2 Next we're going to create a function to compute distances between airports. ## Part a (10 pts) We are going to need to work with the lat, lon in the coordinates variable; however, your current coordinates variable is a factor. Create separate variables lat and lon by first converting the factor to a character, splitting on comma, and then converting the now separated string variables to numeric. ```{r} ``` ## Part b (5 pts) The distance between two points on the surface of the earth is called the "geodesic distance" or "great circle distance." In a moment you'll be given a formula for this distance, but the formula will require that you express the geographic longitude and latitude in **radians**. Recall that \(\pi\) radians is equal to 180 degrees. You current latitude and longitude are in degrees. Convert them to radians ```{r} ``` ## Part c (10 pts) Now, write a function that takes two inputs, both n by 2 matrices whose rows are (lat,lon) pairs, and computes the geodesic distance \(d\) between each pair of locations using the formula \(d = r \Delta \sigma \), where for \(\lambda_1,\phi_1\) the lat,lon of the first location, \(\lambda_2,\phi_2\) the lat,lon of the second location, and \(r\) the radius of the earth, approximately 6378 km, we have \[ \Delta \sigma = \arccos(\cos \lambda_1 \cos \lambda_2 \cos(\phi_1-\phi_2) + \sin \lambda_1 \sin \lambda_2 ). \] Name the function gcd, and print the gcd between MEM and ANC. Note: it is ok here to hard code the radius of the earth, since we won't be computing geodesic distances on Mars. ```{r} ``` ## Part d (15 pts) Write a function that takes as an argument a matrix with two columns and \(n\) rows, each row of which gives a pair of iata codes, one in each column, and returns the geodesic distance between each pair in a \(n\) by 1 matrix. Your function may also take the cargo data frame as an input. Call your function gcd.iata. For good performance, you should use indexing within this function, rather than a loop. You will lose credit if your code cannot finish running in time to submit your homework. Note: the formula used in your gcd function is subject to considerable roundoff error when the distance between the two points is very small. As a result, when the two locations match exactly, it is possible to obtain a distance that is not identically zero. In your function, check whether the two codes are the same, and if they are, always return zero for that entry. ```{r} ``` ## Part e (10 pts) Now compute the gcd between every pair of airports in cargo. Store the results in a matrix whose rows correspond to the origin airport and columns to the destination airport. Call the matrix \(D\) and give it row names and column names with the iata codes of the origin and destination airports. ```{r} ``` # Question 3 While in reality the operation of such a company would be much more complicated, we are going to assume for the purposes of this exercise that each plane makes exactly one trip a day, and that there are exactly as many shipments per day that need to be picked up and delivered as there are planes (30). ## Part a (10 pts) There \(m=50\) possible origins for each shipment, and, for each origin, 49 possible destinations, since the origin cannot equal the destination. Write a function to sample \(n\) origin-destination (od) pairs. Your od pairs should be sampled by taking a sample of size 2 without replacement from the iata codes. Your code should allow for unequal sampling probabilities. Call the probability vector \(\lambda\). Your code should take \(n,\lambda\) and iata_codes as arguments and return a matrix of size n by 2 whose entries are random origin-destination pairs specified as the origin iata code in column 1 and the destination iata code in column 2. ```{r} ``` ## Part b (10 pts) Now we will generate a random sample of origin-destination pairs and of the current locations of all of your planes. Set the random number seed to 14779. Then generate 30 locations for your airplanes (as iata codes) uniformly at random with replacement and generate 30 origin-destination pairs using equal probabilities for all airports. Print the first 10 of each. ```{r} ``` ## Part c (10 pts) Now, create a matrix that contains the distance between the current location of each plane and each origin airport for a shipment. The rows should correspond to current locations of planes, and the columns to origins for shipments ready to be picked up. Give rownames and column names to the matrix so that you can identify which entry corresponds to which city pair. ```{r} ``` # Question 4 In this question we'll determine the optimal way in which to dispatch the planes to minimize the total amount of time spent picking up and delivering each shipment. ## Part a (10 pts) Focusing now on just the first plane, identify which shipment ready for pickup is closest to that plane, and compute how long the plane will take to get there. Print the iata code of the current location of the plane, the origin city for the shipment, and how long it will take to get there. ```{r} ``` ## Part b (10 pts) More generally you need to assign planes to all shipments in an optimal fashion. In Operations Research this is called the "Assignment Problem". There is a package for R called `lpSolve` which solves the assignment problem. Install the lpSolve package. Once installed use `library(lpSolve)` to make the package available to R. If your distance matrix in Question 3 is called distmat, you assign planes to shipments in an optimal fashion with the command `fm <- lp.assign(distmat)`. now `fm$solution` gives you a matrix that shows which plane was assigned to each shipment. in addition, `fm$objval` gives you the total distance traveled between current airports and origin airports for this optimal allocation. solve the problem for your current locations and locations with shipments ready for pickup, then print the city that each of the 30 planes must fly to in order to pick up their cargo. also print the total distance traveled in order to pick up the shipment. ```{r} ``` # question 5 in this question you will put together what you've already done to compute some features of your operation like the average time it takes between the plane leaving its current airport and the shipment being delivered. ## part a (5 pts) compute the distance between your origin and destination pairs and store it as od.dists. ```{r} ``` ## part b (10 pts) for the optimal assigment you computed in the previous question, take one sample of the total amount of time each plane takes to deliver the shipment to its destination. this includes the time required to get from the current airport to the origin airport where the shipment is waiting, the time to load the shipment, the time to get to the destination airport, and the time to unload the shipment. assume that loading times (in hours) have independent \(\text{exponential}(1)\) distributions and that unloading times (in hours) have independent \(\text{exponential}(2)\) distributions. before running your code, set the random number seed to 10733. then show the average of the times you sampled in hours. ```{r} ``` ## part c (20 pts) write a function that takes a number of monte carlo samples (nmc), the number of planes/shipments per day (n), the cargo dataframe, and a probability vector for airports (lambda), and returns lp.assign(distmat)`.="" now="" `fm$solution`="" gives="" you="" a="" matrix="" that="" shows="" which="" plane="" was="" assigned="" to="" each="" shipment.="" in="" addition,="" `fm$objval`="" gives="" you="" the="" total="" distance="" traveled="" between="" current="" airports="" and="" origin="" airports="" for="" this="" optimal="" allocation.="" solve="" the="" problem="" for="" your="" current="" locations="" and="" locations="" with="" shipments="" ready="" for="" pickup,="" then="" print="" the="" city="" that="" each="" of="" the="" 30="" planes="" must="" fly="" to="" in="" order="" to="" pick="" up="" their="" cargo.="" also="" print="" the="" total="" distance="" traveled="" in="" order="" to="" pick="" up="" the="" shipment.="" ```{r}="" ```="" #="" question="" 5="" in="" this="" question="" you="" will="" put="" together="" what="" you've="" already="" done="" to="" compute="" some="" features="" of="" your="" operation="" like="" the="" average="" time="" it="" takes="" between="" the="" plane="" leaving="" its="" current="" airport="" and="" the="" shipment="" being="" delivered.="" ##="" part="" a="" (5="" pts)="" compute="" the="" distance="" between="" your="" origin="" and="" destination="" pairs="" and="" store="" it="" as="" od.dists.="" ```{r}="" ```="" ##="" part="" b="" (10="" pts)="" for="" the="" optimal="" assigment="" you="" computed="" in="" the="" previous="" question,="" take="" one="" sample="" of="" the="" total="" amount="" of="" time="" each="" plane="" takes="" to="" deliver="" the="" shipment="" to="" its="" destination.="" this="" includes="" the="" time="" required="" to="" get="" from="" the="" current="" airport="" to="" the="" origin="" airport="" where="" the="" shipment="" is="" waiting,="" the="" time="" to="" load="" the="" shipment,="" the="" time="" to="" get="" to="" the="" destination="" airport,="" and="" the="" time="" to="" unload="" the="" shipment.="" assume="" that="" loading="" times="" (in="" hours)="" have="" independent="" \(\text{exponential}(1)\)="" distributions="" and="" that="" unloading="" times="" (in="" hours)="" have="" independent="" \(\text{exponential}(2)\)="" distributions.="" before="" running="" your="" code,="" set="" the="" random="" number="" seed="" to="" 10733.="" then="" show="" the="" average="" of="" the="" times="" you="" sampled="" in="" hours.="" ```{r}="" ```="" ##="" part="" c="" (20="" pts)="" write="" a="" function="" that="" takes="" a="" number="" of="" monte="" carlo="" samples="" (nmc),="" the="" number="" of="" planes/shipments="" per="" day="" (n),="" the="" cargo="" dataframe,="" and="" a="" probability="" vector="" for="" airports="" (lambda),="" and="">
Answered Same DayMar 01, 2021University of New South Wales

Answer To: --- title: "Stat 405/705 HW 5" author: "James Johndrow" output: html_document: default pdf_document:...

Chetan answered on Mar 06 2021
146 Votes
Stat 405/705 HW 5
Stat 405/705 HW 5
James Johndrow
Directions
If in a question I refer to a function that we have not seen in class, then use the help facility in R or Google to find out about it. Insert your answers and the R code you used to generate them, beneath each question. If there is no R code chunk present, create one.
Submit your solutions to canvas – both the R markdown file and the html file. I strongly suggest checking as you go that your file knits. If you cannot knit, submit just the Rmd.
This assignment will focus on computing various aspects of the operations of a charter air cargo business with stochastic order origination. Your business owns 30 planes, all of which are identical and travel at identical speeds (800 km/h; you may neglect variation in speed during takeoff and landing). The way your business works is that one or several customers charter a cargo flight to bring their goods from one city to another. As such, a major aspect of your operation is to optimize the movement of your cargo planes from their current location to airports where an order is waiting to be picked up. We will use simulations to compute things like the average time it takes to complete a delivery, including the time it takes to fly from the current location to the airport of origin for the shipment, the time to load the shipment, the time it takes to fly to the destination city, and the time it takes to unload the shipment.
Question 1:
In this question we’ll assemble a dataset you need.
Part a (5 pts)
There are two data files on canvas: airport.csv and airport-codes.csv. Read them both in using read.csv as dataframes cargo and locs, respectively.
cargo<- read.csv("airport.csv", header=TRUE)
locs<- read.csv("airport-codes.csv",header=TRUE)
Part b (5 pts)
Cargo contains data on the 50 busiest cargo airports in the US. For the purposes of this exercise we’ll assume that you only fly between these airports. locs contains information on the geolocation (lat,lon) of most airports worldwide. We only need this latter dataset to get the geolocations of the 50 airports where we fly into our airport data frame. Use merge to add a column to cargo that contains the geolocation of each airport. You can use the IATA code as key variable.
cargo1=merge(cargo,locs,by.x="iata_code",by.y = "iata_code")
Part c (10 pts)
Something has gone slightly wrong with your merge. One of the observations has been duplicated. Identify the airport that has been duplicated. Now print the iata code and the coordinates of the two entries for this airport, and remedy the problem by removing the observation with the larger value of the latitude coordinate (you can do this “by inspection”).
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 3.6.2
## -- Attaching packages -------------------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.2.1 v purrr 0.3.3
## v tibble 2.1.3 v dplyr 0.8.4
## v tidyr 1.0.2 v stringr 1.4.0
## v readr 1.3.1 v forcats 0.4.0
## Warning: package 'ggplot2' was built under R version 3.6.1
## Warning: package 'tibble' was built under R version 3.6.2
## Warning: package 'tidyr' was built under R version 3.6.2
## Warning: package 'purrr' was built under R version 3.6.2
## Warning: package 'dplyr' was built under R version 3.6.2
## -- Conflicts ----------------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(dplyr)
test=cargo1%>%group_by(iata_code)%>%summarize(n=n())%>%filter(n>1)%>%
left_join(
cargo)%>%left_join(locs)%>%select(iata_code,coordinates)
## Joining, by = "iata_code"
## Joining, by = "iata_code"
## Warning: Column `iata_code` joining factors with different levels, coercing
## to character vector
Now explain in two sentences why this duplication occurred and how you know.
Answer: Duplicate occured because the left table has two records for iata_code “AUS” ## Part d (5 pts)
Coerce the variable iata_code in cargo to character. Sort the resulting data frame by rank (the rank, in ascending order, of the airport in terms of the total number of tons of cargo that pass through it each year), and print the top 5 (i.e. these are the 5 busiest)
cargo2=cargo%>%mutate(iata_code=as.character(iata_code))%>%
arrange(rank)%>%top_n(5)
## Selecting by Tons_2017
Question 2
Next we’re going to create a function to compute distances between airports.
Part a (10 pts)
We are going to need to work with the lat, lon in the coordinates variable; however, your current coordinates variable is a factor. Create separate variables lat and lon by first converting the factor to a character, splitting on comma, and then converting the now separated string variables to numeric.
library(tidyverse)
cargo1.1=cargo1%>%filter(ident !="AUS")%>%mutate(latnlon=as.character(coordinates))%>%
separate(latnlon,c("lat_chr","lon_chr"),sep=",",remove=TRUE)%>%
mutate(lat=as.numeric(lat_chr),lon=as.numeric(lon_chr))%>%select(-lat_chr,-lon_chr,-coordinates)
Part b (5 pts)
The distance between two points on the surface of the earth is called the “geodesic distance” or “great circle distance.” In a moment you’ll be given a formula for this distance, but the formula will require that you express the geographic longitude and latitude in radians. Recall that ππ radians is equal to 180 degrees. You current latitude and longitude are in degrees. Convert them to radians
library(REdaS)
## Warning: package 'REdaS' was built under R version 3.6.2
## Loading required package: grid
cargo1.2=cargo1.1%>%mutate(lat_rad=deg2rad(lat),lon_rad=deg2rad(lon))
Part c (10 pts)
Now, write a function that takes two inputs, both n by 2 matrices whose rows are (lat,lon) pairs, and computes the geodesic distance dd between each pair of locations using the formula d=rΔσd=rΔσ, where for λ1,ϕ1λ1,ϕ1 the lat,lon of the first location, λ2,ϕ2λ2,ϕ2 the lat,lon of the second location, and rr the radius of the earth, approximately 6378 km, we have
Δσ=arccos(cosλ1cosλ2cos(ϕ1−ϕ2)+sinλ1sinλ2).Δσ=arccos⁡(cos⁡λ1cos⁡λ2cos⁡(ϕ1−ϕ2)+sin⁡λ1sin⁡λ2).
Name the function gcd, and print the gcd between MEM and ANC. Note: it is ok here to hard code the radius of the earth, since we won’t be computing geodesic distances on Mars.
a1=cargo1.2%>%filter(iata_code=="MEM")%>%select(iata_code,lat_rad,lon_rad)%>%
mutate(iata=as.character(iata_code))
a2=cargo1.2%>%filter(iata_code=="ANC")%>%select(iata_code,lat_rad,lon_rad)%>%
mutate(iata=as.character(iata_code))
gcd=function(x,y){
dlt<- data.frame(delta=acos(cos(x$lat_rad)*cos(y$lat_rad)*cos(x$lon_rad-y$lon_rad)+ sin(x$lat_rad)*sin(y$lat_rad)))
dlt<-dlt%>%mutate(distance=6378*delta)
result<-data.frame(location1=x$iata,location2=y$iata)
result1<<-cbind(result,dlt["distance"])
print(result1)
}
gcd(a1,a2)
## location1 location2 distance
## 1 MEM ANC 5070.429
Part d (15 pts)
Write a function that takes as an argument a matrix with two columns and nn rows, each row of which gives a pair of iata codes, one in each column, and returns the geodesic distance between each pair in a nn by 1 matrix. Your function may also take the cargo data frame as an input. Call your function gcd.iata. For good performance, you should use indexing within this function, rather than a loop. You will lose credit if your code cannot finish running in time to submit your homework.
Note: the formula used in your gcd function is subject to considerable roundoff error when the distance between the two points is very small. As a result, when the two locations match exactly, it is possible to obtain a distance that is not identically zero. In your function, check whether the two codes are the same, and if they are, always return zero for that entry.
# install.packages('gtools',repos='http://cran.us.r-project.org')
#load library
library(gtools)
l <- as.character(cargo1.2$iata_code)
l_p=data.frame(permutations(n=50,r=2,v=l,repeats.allowed=T))
gcd.iata=function(x,data){
l_p1<<-l_p%>%select(X1)%>%left_join(data[,c("iata_code","lat_rad","lon_rad")],by=c("X1"="iata_code"))%>%rename(iata=X1)

l_p2<<-l_p%>%select(X2)%>%left_join(data[,c("iata_code","lat_rad","lon_rad")],by=c("X2"="iata_code"))%>%rename(iata=X2)

gcd(l_p1,l_p2)
}
gcd.iata(l_p,cargo1.2)
## location1 location2 distance
## 1 ABE ABE 0.000000e+00
## 2 ABE ABQ 2.794454e+03
## 3 ABE AFW 2.120589e+03
## 4 ABE ANC 5.351574e+03
## 5 ABE ATL 1.114976e+03
## 6 ABE AUS 2.318483e+03
## 7 ABE BDL 2.714721e+02
## 8 ABE BFI 3.764522e+03
## 9 ABE BOS 4.159120e+02
## 10 ABE BQN 2.591279e+03
## 11 ABE BWI 1.949448e+02
## 12 ABE CLT 7.741269e+02
## 13 ABE CVG 8.080681e+02
## 14 ABE DEN 2.473437e+03
## 15 ABE DFW 2.102999e+03
## 16 ABE DTW 6.825464e+02
## 17 ABE ELP 2.929156e+03
## 18 ABE EWR 1.074947e+02
## 19 ABE GSO 6.408871e+02
## 20 ABE HNL 7.878212e+03
## 21 ABE IAH 2.154682e+03
## 22 ABE IND 9.282630e+02
## 23 ABE JFK 1.403719e+02
## 24 ABE LAX 3.838358e+03
## 25 ABE LCK 6.428639e+02
## 26 ABE LRD 2.637832e+03
## 27 ABE MCI 1.647671e+03
## 28 ABE MCO 1.462192e+03
## 29 ABE MEM 1.419702e+03
## 30 ABE MIA 1.713821e+03
## 31 ABE MKE 1.063638e+03
## 32 ABE MSP 1.523761e+03
## 33 ABE OAK 4.001780e+03
## 34 ABE ONT 3.765156e+03
## 35 ABE ORD 1.051545e+03
## 36 ABE PDX 3.814894e+03
## 37 ABE PHL 8.849093e+01
## 38 ABE PHX 3.321643e+03
## 39 ABE RDU 6.065333e+02
## 40 ABE RFD 1.151483e+03
## 41 ABE RIC 3.860745e+02
## 42 ABE RNO 3.737463e+03
## 43 ABE SAN 3.791982e+03
## 44 ABE SAT 2.424315e+03
## 45 ABE SDF 9.267139e+02
## 46 ABE SEA 3.765982e+03
## 47 ABE SFO 4.018398e+03
## 48 ABE SJU 2.632185e+03
## 49 ABE SLC 3.059887e+03
## 50 ABE TPA 1.553113e+03
## 51 ABQ ABE 2.794454e+03
## 52 ABQ ABQ 0.000000e+00
## 53 ABQ AFW 8.867555e+02
## 54 ABQ ANC 4.210543e+03
## 55 ABQ ATL 2.040573e+03
## 56 ABQ AUS 9.960391e+02
## 57 ABQ BDL 3.032531e+03
## 58 ABQ BFI 1.904934e+03
## 59 ABQ BOS 3.173405e+03
## 60 ABQ BQN 4.297604e+03
## 61 ABQ BWI 2.684991e+03
## 62 ABQ CLT 2.330248e+03
## 63 ABQ CVG 1.994583e+03
## 64 ABQ DEN 5.632812e+02
## 65 ABQ DFW 9.148167e+02
## 66 ABQ DTW 2.165627e+03
## 67 ABQ ELP 3.605271e+02
## 68 ABQ EWR 2.901949e+03
## 69 ABQ GSO 2.410355e+03
## 70 ABQ HNL 5.201499e+03
## 71 ABQ IAH 1.197003e+03
## 72 ABQ IND 1.866193e+03
## 73 ABQ JFK 2.934663e+03
## 74 ABQ LAX 1.088768e+03
## 75 ABQ LCK 2.152796e+03
## 76 ABQ LRD 1.075662e+03
## 77 ABQ MCI 1.155451e+03
## 78 ABQ MCO 2.497795e+03
## 79 ABQ MEM 1.514097e+03
## 80 ABQ MIA 2.717553e+03
## 81 ABQ MKE 1.836869e+03
## 82 ABQ MSP 1.578765e+03
## 83 ABQ OAK 1.428810e+03
## 84 ABQ ONT 1.013229e+03
## 85 ABQ ORD 1.797890e+03
## 86 ABQ PDX 1.788619e+03
## 87 ABQ PHL 2.808517e+03
## 88 ABQ PHX 5.282918e+02
## 89 ABQ RDU 2.515819e+03
## 90 ABQ RFD 1.714160e+03
## 91 ABQ RIC 2.632197e+03
## 92 ABQ RNO 1.265361e+03
## 93 ABQ SAN 1.010359e+03
## 94 ABQ SAT 9.803698e+02
## 95 ABQ SDF 1.893295e+03
## 96 ABQ SEA 1.899406e+03
## 97 ABQ SFO 1.440886e+03
## 98 ABQ SJU 4.400502e+03
## 99 ABQ SLC 7.944648e+02
## 100 ABQ TPA 2.409150e+03
## 101 AFW ABE 2.120589e+03
## 102 AFW ABQ 8.867555e+02
## 103 AFW AFW 9.503961e-05
## 104 AFW ANC 4.871681e+03
## 105 AFW ATL 1.200575e+03
## 106 AFW AUS 3.126961e+02
## 107 AFW BDL 2.382668e+03
## 108 AFW BFI 2.649194e+03
## 109 AFW BOS 2.528854e+03
## 110 AFW BQN 3.411979e+03
## 111 AFW BWI 1.975890e+03
## 112 AFW CLT 1.527839e+03
## 113 AFW CVG 1.322015e+03
## 114 AFW DEN 1.008892e+03
## 115 AFW DFW 2.811199e+01
## 116 AFW DTW 1.599873e+03
## 117 AFW ELP 8.612755e+02
## 118 AFW EWR 2.225068e+03
## 119 AFW GSO 1.628527e+03
## 120 AFW HNL 6.060721e+03
## 121 AFW IAH 3.833776e+02
## 122 AFW IND 1.238574e+03
## 123 AFW JFK 2.255349e+03
## 124 AFW LAX 1.957854e+03
## 125 AFW LCK 1.493884e+03
## 126 AFW LRD 6.399990e+02
## 127 AFW MCI 7.403158e+02
## 128 AFW MCO 1.612059e+03
## 129 AFW MEM 7.148079e+02
## 130 AFW MIA 1.832260e+03
## 131 AFW MKE 1.381093e+03
## 132 AFW MSP 1.370255e+03
## 133 AFW OAK 2.313988e+03
## 134 AFW ONT 1.882910e+03
## 135 AFW ORD 1.299506e+03
## 136 AFW PDX 2.573379e+03
## 137 AFW PHL 2.113684e+03
## 138 AFW PHX 1.368210e+03
## 139 AFW RDU 1.728796e+03
## 140 AFW RFD 1.254197e+03
## 141 AFW RIC 1.882266e+03
## 142 AFW RNO 2.134881e+03
## 143 AFW SAN 1.855517e+03
## 144 AFW SAT 3.997637e+02
## 145 AFW SDF 1.195750e+03
## 146 AFW SEA 2.645351e+03
## 147 AFW SFO 2.326418e+03
## 148 AFW SJU 3.514254e+03
## 149 AFW SLC 1.564293e+03
## 150 AFW TPA 1.522395e+03
## 151 ANC ABE 5.351574e+03
## 152 ANC ABQ 4.210543e+03
## 153 ANC AFW 4.871681e+03
## 154 ANC ANC 0.000000e+00
## 155 ANC ATL 5.494469e+03
## 156 ANC AUS 5.114809e+03
## 157 ANC BDL 5.384610e+03
## 158 ANC BFI 2.321513e+03
## 159 ANC BOS 5.434912e+03
## 160 ANC BQN 7.841850e+03
## 161 ANC BWI 5.415581e+03
## 162 ANC CLT 5.538986e+03
## 163 ANC CVG 4.999221e+03
## 164 ANC DEN 3.867296e+03
## 165 ANC DFW 4.894635e+03
## 166 ANC DTW 4.797332e+03
## 167 ANC ELP 4.528123e+03
## 168 ANC EWR 5.415046e+03
## 169 ANC GSO 5.513689e+03
## 170 ANC HNL 4.478966e+03
## 171 ANC IAH 5.254253e+03
## 172 ANC IND 4.853770e+03
## 173 ANC JFK 5.440118e+03
## 174 ANC LAX 3.774952e+03
## 175 ANC LCK 5.025923e+03
## 176 ANC LRD 5.276640e+03
## 177 ANC MCI 4.439473e+03
## 178 ANC MCO 6.140972e+03
## 179 ANC MEM 5.070429e+03
## 180 ANC MIA 6.442402e+03
## 181 ANC MKE 4.492194e+03
## 182 ANC MSP 4.046440e+03
## 183 ANC OAK 3.243606e+03
## 184 ANC ONT 3.797720e+03
## 185 ANC ORD 4.573397e+03
## 186 ANC PDX 2.479454e+03
## 187 ANC PHL 5.430156e+03
## 188 ANC PHX 4.105935e+03
## 189 ANC RDU 5.594984e+03
## 190 ANC RFD 4.491063e+03
## 191 ANC RIC 5.528308e+03
## 192 ANC RNO 3.174033e+03
## 193 ANC SAN 3.946168e+03
## 194 ANC SAT 5.136601e+03
## 195 ANC SDF 5.018498e+03
## 196 ANC SEA 2.328196e+03
## 197 ANC SFO 3.247475e+03
## 198 ANC SJU 7.907579e+03
## 199 ANC SLC 3.416704e+03
## 200 ANC TPA 6.117792e+03
## 201 ATL ABE 1.114976e+03
## 202 ATL ABQ 2.040573e+03
## 203 ATL AFW 1.200575e+03
## 204 ATL ANC 5.494469e+03
## 205 ATL ATL 0.000000e+00
## 206 ATL AUS 1.307426e+03
## 207 ATL BDL 1.383838e+03
## 208 ATL BFI 3.510213e+03
## 209 ATL BOS 1.523226e+03
## 210 ATL BQN 2.408053e+03
## 211 ATL BWI 9.285499e+02
## 212 ATL CLT 3.649676e+02
## 213 ATL CVG 6.028419e+02
## 214 ATL DEN 1.928735e+03
## 215 ATL DFW 1.175822e+03
## 216 ATL DTW 9.592504e+02
## 217 ATL ELP 2.061817e+03
## 218 ATL EWR 1.200634e+03
## 219 ATL GSO 4.931478e+02
## 220 ATL HNL 7.241873e+03
## 221 ATL IAH 1.108779e+03
## 222 ATL IND 6.970303e+02
## 223 ATL JFK 1.223436e+03
## 224 ATL LAX 3.129211e+03
## 225 ATL LCK 7.004918e+02
## 226 ATL LRD 1.590028e+03
## 227 ATL MCI 1.114599e+03
## 228 ATL MCO 6.514513e+02
## 229 ATL MEM 5.333779e+02
## 230 ATL MIA 9.601183e+02
## 231 ATL MKE 1.079538e+03
## 232 ATL MSP 1.461322e+03
## 233 ATL OAK 3.424140e+03
## 234 ATL ONT 3.053679e+03
## 235 ATL ORD 9.774005e+02
## 236 ATL PDX 3.492995e+03
## 237 ATL PHL 1.072770e+03
## 238 ATL PHX 2.551882e+03
## 239 ATL RDU 5.728771e+02
## 240 ATL RFD 1.036777e+03
## 241 ATL RIC 7.740295e+02
## 242 ATL RNO 3.204811e+03
## 243 ATL SAN 3.041021e+03
## 244 ATL SAT 1.406242e+03
## 245 ATL SDF 5.186884e+02
## 246 ATL SEA 3.508828e+03
## 247 ATL SFO 3.438492e+03
## 248 ATL SJU 2.493679e+03
## 249 ATL SLC 2.556410e+03
## 250 ATL TPA 6.556714e+02
## 251 AUS ABE 2.318483e+03
## 252 AUS ABQ 9.960391e+02
## 253 AUS AFW 3.126961e+02
## 254 AUS ANC 5.114809e+03
## 255 AUS ATL 1.307426e+03
## 256 AUS AUS 0.000000e+00
## 257 AUS BDL 2.586517e+03
## 258 AUS BFI 2.855052e+03
## 259 AUS BOS 2.732698e+03
## 260 AUS BQN 3.346083e+03
## 261 AUS BWI 2.159408e+03
## 262 AUS CLT 1.660855e+03
## 263 AUS CVG 1.543132e+03
## 264 AUS DEN 1.250195e+03
## 265 AUS DFW 3.067249e+02
## 266 AUS DTW 1.850556e+03
## 267 AUS ELP 8.498052e+02
## 268 AUS EWR 2.419566e+03
## 269 AUS GSO 1.775191e+03
## 270 AUS HNL 6.053896e+03
## 271 AUS IAH 2.254847e+02
## 272 AUS IND 1.481057e+03
## 273 AUS JFK 2.448150e+03
## 274 AUS LAX 1.996539e+03
## 275 AUS LCK 1.714545e+03
## 276 AUS LRD 3.428712e+02
## 277 AUS MCI 1.048600e+03
## 278 AUS MCO 1.598765e+03
## 279 AUS MEM 9.003343e+02
## 280 AUS MIA 1.774985e+03
## 281 AUS MKE 1.664222e+03
## 282 AUS MSP 1.680745e+03
## 283 AUS OAK 2.407968e+03
## 284 AUS ONT 1.924115e+03
## 285 AUS ORD 1.576294e+03
## 286 AUS PDX 2.760744e+03
## 287 AUS PHL 2.301624e+03
## 288 AUS PHX 1.402445e+03
## 289 AUS RDU 1.868436e+03
## 290 AUS RFD 1.540025e+03
## 291 AUS RIC 2.044218e+03
## 292 AUS RNO 2.260454e+03
## 293 AUS SAN 1.872106e+03
## 294 AUS SAT 1.066462e+02
## 295 AUS SDF 1.410919e+03
## 296 AUS SEA 2.850501e+03
## 297 AUS SFO 2.418669e+03
## 298 AUS SJU 3.453643e+03
## 299 AUS SLC 1.748523e+03
## 300 AUS TPA 1.491893e+03
## 301 BDL ABE 2.714721e+02
## 302 BDL ABQ 3.032531e+03
## 303 BDL AFW 2.382668e+03
## 304 BDL ANC 5.384610e+03
## 305 BDL ATL 1.383838e+03
## 306 BDL AUS 2.586517e+03
## 307 BDL BDL 9.503961e-05
## 308 BDL BFI 3.904640e+03
## 309 BDL BOS 1.463500e+02
## 310 BDL BQN 2.662306e+03
## 311 BDL BWI 4.562198e+02
## 312 BDL CLT 1.036833e+03
## 313 BDL CVG 1.063259e+03
## 314 BDL DEN 2.685849e+03
## 315 BDL DFW 2.365781e+03
## 316 BDL DTW 8.815895e+02
## 317 BDL ELP 3.180675e+03
## 318 BDL EWR 1.862088e+02
## 319 BDL GSO 9.028684e+02
## 320 BDL HNL 8.071943e+03
## 321 BDL IAH 2.425012e+03
## 322 BDL IND 1.171494e+03
## 323 BDL JFK 1.712030e+02
## 324 BDL LAX 4.061789e+03
## 325 BDL LCK 8.935137e+02
## 326 BDL LRD 2.907635e+03
## 327 BDL MCI 1.879239e+03
## 328 BDL MCO 1.694073e+03
## 329 BDL MEM 1.686726e+03
## 330 BDL MIA 1.927886e+03
## 331 BDL MKE 1.253027e+03
## 332 BDL MSP 1.688077e+03
## 333 BDL OAK 4.201739e+03
## 334 BDL ONT 3.989432e+03
## 335 BDL ORD 1.258364e+03
## 336 BDL PDX 3.968200e+03
## 337 BDL PHL 3.150161e+02
## 338 BDL PHX 3.557733e+03
## 339 BDL RDU 8.567219e+02
## 340 BDL RFD 1.354616e+03
## 341 BDL RIC 6.331687e+02
## 342 BDL RNO 3.931640e+03
## 343 BDL SAN 4.022312e+03
## 344 BDL SAT 2.692562e+03
## 345 BDL SDF 1.186949e+03
## 346 BDL SEA 3.906671e+03
## 347 BDL SFO 4.218631e+03
## 348 BDL SJU 2.691525e+03
## 349 BDL SLC 3.256513e+03
## 350 BDL TPA 1.792505e+03
## 351 BFI ABE 3.764522e+03
## 352 BFI ABQ 1.904934e+03
## 353 BFI AFW 2.649194e+03
## 354 BFI ANC 2.321513e+03
## 355 BFI ATL 3.510213e+03
## 356 BFI AUS 2.855052e+03
## 357 BFI BDL 3.904640e+03
## 358 BFI BFI 0.000000e+00
## 359 BFI BOS 4.007633e+03
## 360 BFI BQN 5.916772e+03
## 361 BFI BWI 3.751286e+03
## 362 BFI CLT 3.664939e+03
## 363 BFI CVG 3.157278e+03
## 364 BFI DEN 1.650139e+03
## 365 BFI DFW 2.674891e+03
## 366 BFI DTW 3.095312e+03
## 367 BFI ELP 2.210016e+03
## 368 BFI EWR 3.857456e+03
## 369 BFI GSO 3.684876e+03
## 370 BFI HNL 4.317600e+03
## 371 BFI IAH 3.020839e+03
## 372 BFI IND 2.998817e+03
## 373 BFI JFK 3.889290e+03
## 374 BFI LAX 1.547238e+03
## 375 BFI LCK 3.246522e+03
## 376 BFI LRD 2.979804e+03
## 377 BFI MCI 2.395624e+03
## 378 BFI MCO 4.111206e+03
## 379 BFI MEM 3.010260e+03
## 380 BFI MIA 4.386603e+03
## 381 BFI MKE 2.721420e+03
## 382 BFI MSP 2.246217e+03
## 383 BFI OAK 1.091896e+03
## 384 BFI ONT 1.550559e+03
## 385 BFI ORD 2.764264e+03
## 386 BFI PDX 2.172837e+02
## 387 BFI PHL 3.820560e+03
## 388 BFI PHX 1.791091e+03
## 389 BFI RDU 3.784658e+03
## 390 BFI RFD 2.664627e+03
## 391 BFI RIC 3.797001e+03
## 392 BFI RNO 9.169419e+02
## 393 BFI SAN 1.702599e+03
## 394 BFI SAT 2.862212e+03
## 395 BFI SDF 3.126727e+03
## 396 BFI SEA 9.031782e+00
## 397 BFI SFO 1.103280e+03
## 398 BFI SJU 6.003822e+03
## 399 BFI SLC 1.113121e+03
## 400 BFI TPA 4.057702e+03
## 401 BOS ABE 4.159120e+02
## 402 BOS ABQ 3.173405e+03
## 403 BOS AFW 2.528854e+03
## 404 BOS ANC 5.434912e+03
## 405 BOS ATL 1.523226e+03
## 406 BOS AUS 2.732698e+03
## 407 BOS BDL 1.463500e+02
## 408 BOS BFI 4.007633e+03
## 409 BOS BOS 0.000000e+00
## 410 BOS BQN 2.682220e+03
## 411 BOS BWI 5.947068e+02
## 412 BOS CLT 1.171961e+03
## 413 BOS CVG 1.208948e+03
## 414 BOS DEN 2.818825e+03
## 415 BOS DFW 2.512026e+03
## 416 BOS DTW 1.016106e+03
## 417 BOS ELP 3.324995e+03
## 418 BOS EWR 3.226603e+02
## 419 BOS GSO 1.038040e+03
## 420 BOS HNL 8.195245e+03
## 421 BOS IAH 2.570467e+03
## 422 BOS IND 1.315095e+03
## 423 BOS JFK 3.005078e+02
## 424 BOS LAX 4.197636e+03
## 425 BOS LCK 1.038787e+03
## 426 BOS LRD 3.053361e+03
## 427 BOS MCI 2.019065e+03
## 428 BOS MCO 1.807959e+03
## 429 BOS MEM 1.832998e+03
## 430 BOS MIA 2.030510e+03
## 431 BOS MKE 1.382039e+03
## 432 BOS MSP 1.806214e+03
## 433 BOS OAK 4.329025e+03
## 434 BOS ONT 4.125593e+03
## 435 BOS ORD 1.392607e+03
## 436 BOS PDX 4.076794e+03
## 437 BOS PHL 4.506366e+02
## 438 BOS PHX 3.697834e+03
## 439 BOS RDU 9.855906e+02
## 440 BOS RFD 1.487357e+03
## 441 BOS RIC 7.631560e+02
## 442 BOS RNO 4.056893e+03
## 443 BOS SAN 4.160461e+03
## 444 BOS SAT 2.838711e+03
## 445 BOS SDF 1.333109e+03
## 446 BOS SEA 4.009910e+03
## 447 BOS SFO 4.346011e+03
## 448 BOS SJU 2.704950e+03
## 449 BOS SLC 3.383267e+03
## 450 BOS TPA 1.910554e+03
## 451 BQN ABE 2.591279e+03
## 452 BQN ABQ 4.297604e+03
## 453 BQN AFW 3.411979e+03
## 454 BQN ANC 7.841850e+03
## 455 BQN ATL 2.408053e+03
## 456 BQN AUS 3.346083e+03
## 457 BQN BDL 2.662306e+03
## 458 BQN BFI 5.916772e+03
## 459 BQN BOS 2.682220e+03
## 460 BQN BQN 0.000000e+00
## 461 BQN BWI 2.479184e+03
## 462 BQN CLT 2.306554e+03
## 463 BQN CVG 2.845674e+03
## 464 BQN DEN 4.307246e+03
## 465 BQN DFW 3.383867e+03
## 466 BQN DTW 3.053519e+03
## 467 BQN ELP 4.195678e+03
## 468 BQN EWR 2.560921e+03
## 469 BQN GSO 2.328227e+03
## 470 BQN HNL 9.359913e+03
## 471 BQN IAH 3.124588e+03
## 472 BQN IND 2.995064e+03
## 473 BQN JFK 2.545763e+03
## 474 BQN LAX 5.342084e+03
## 475 BQN LCK 2.816744e+03
## 476 BQN LRD 3.450571e+03
## 477 BQN MCI 3.521769e+03
## 478 BQN MCO 1.819212e+03
## 479 BQN MEM 2.910605e+03
## 480 BQN MIA 1.580064e+03
## 481 BQN MKE 3.349967e+03
## 482 BQN MSP 3.804224e+03
## 483 BQN OAK 5.725911e+03
## 484 BQN ONT 5.269184e+03
## 485 BQN ORD 3.271173e+03
## 486 BQN PDX 5.891915e+03
## 487 BQN PHL 2.503959e+03
## 488 BQN PHX 4.747319e+03
## 489 BQN RDU 2.248870e+03
## 490 BQN RFD 3.357058e+03
## 491 BQN RIC 2.337444e+03
## 492 BQN RNO 5.540336e+03
## 493 BQN SAN 5.217333e+03
## 494 BQN SAT 3.401751e+03
## 495 BQN SDF 2.838021e+03
## 496 BQN SEA 5.915201e+03
## 497 BQN SFO 5.738246e+03
## 498 BQN SJU 1.192177e+02
## 499 BQN SLC 4.925904e+03
## 500 BQN TPA 1.893469e+03
## 501 BWI ABE 1.949448e+02
## 502 BWI ABQ 2.684991e+03
## 503 BWI AFW 1.975890e+03
## 504 BWI ANC 5.415581e+03
## 505 BWI ATL 9.285499e+02
## 506 BWI AUS 2.159408e+03
## 507 BWI BDL 4.562198e+02
## 508 BWI BFI 3.751286e+03
## 509 BWI BOS 5.947068e+02
## 510 BWI BQN 2.479184e+03
## 511 BWI BWI 0.000000e+00
## 512 BWI CLT 5.813463e+02
## 513 BWI CVG 6.908562e+02
## 514 BWI DEN 2.396176e+03
## 515 BWI DFW 1.956916e+03
## 516 BWI DTW 6.574594e+02
## 517 BWI ELP 2.800472e+03
## 518 BWI EWR 2.720843e+02
## 519 BWI GSO 4.475991e+02
## 520 BWI HNL 7.809565e+03
## 521 BWI IAH 1.987971e+03
## 522 BWI IND 8.292664e+02
## 523 BWI JFK 2.956855e+02
## 524 BWI LAX 3.744022e+03
## 525 BWI LCK 5.422622e+02
## 526 BWI LRD 2.472635e+03
## 527 BWI MCI 1.553359e+03
## 528 BWI MCO 1.270392e+03
## 529 BWI MEM 1.266310e+03
## 530 BWI MIA 1.527620e+03
## 531 BWI MKE 1.030627e+03
## 532 BWI MSP 1.505280e+03
## 533 BWI OAK 3.932388e+03
## 534 BWI ONT 3.670009e+03
## 535 BWI ORD 9.990670e+02
## 536 BWI PDX 3.790078e+03
## 537 BWI PHL 1.450114e+02
## 538 BWI PHX 3.213264e+03
## 539 BWI RDU 4.119917e+02
## 540 BWI RFD 1.100484e+03
## 541 BWI RIC 1.944247e+02
## 542 BWI RNO 3.674598e+03
## 543 BWI SAN 3.689659e+03
## 544 BWI SAT 2.264450e+03
## 545 BWI SDF 7.955269e+02
## 546 BWI SEA 3.752255e+03
## 547 BWI SFO 3.948686e+03
## 548 BWI SJU 2.527285e+03
## 549 BWI SLC 2.996781e+03
## 550 BWI TPA 1.359397e+03
## 551 CLT ABE 7.741269e+02
## 552 CLT ABQ 2.330248e+03
## 553 CLT AFW 1.527839e+03
## 554 CLT ANC 5.538986e+03
## 555 CLT ATL 3.649676e+02
## 556 CLT AUS 1.660855e+03
## 557 CLT BDL 1.036833e+03
## 558 CLT BFI 3.664939e+03
## 559 CLT BOS 1.171961e+03
## 560 CLT BQN 2.306554e+03
## 561 CLT BWI 5.813463e+02
## 562 CLT CLT 1.344063e-04
## 563 CLT CVG 5.397871e+02
## 564 CLT DEN 2.150562e+03
## 565 CLT DFW 1.504859e+03
## 566 CLT DTW 8.065814e+02
## 567 CLT ELP 2.384282e+03
## 568 CLT EWR 8.512206e+02
## 569 CLT GSO 1.339951e+02
## 570 CLT HNL 7.524780e+03
## 571 CLT IAH 1.468508e+03
## 572 CLT IND 6.888165e+02
## 573 CLT JFK 8.714857e+02
## 574 CLT LAX 3.416284e+03
## 575 CLT LCK 5.411515e+02
## 576 CLT LRD 1.951714e+03
## 577 CLT MCI 1.300371e+03
## 578 CLT MCO 7.560327e+02
## 579 CLT MEM 8.223805e+02
## 580 CLT MIA 1.050553e+03
## 581 CLT MKE 1.048934e+03
## 582 CLT MSP 1.497717e+03
## 583 CLT OAK 3.675902e+03
## 584 CLT ONT 3.340873e+03
## 585 CLT ORD 9.656385e+02
## 586 CLT PDX 3.668520e+03
## 587 CLT PHL 7.222659e+02
## 588 CLT PHX 2.851512e+03
## 589 CLT RDU 2.087410e+02
## 590 CLT RFD 1.050505e+03
## 591 CLT RIC 4.129270e+02
## 592 CLT RNO 3.441482e+03
## 593 CLT SAN 3.339041e+03
## 594 CLT SAT 1.761811e+03
## 595 CLT SDF 5.398788e+02
## 596 CLT SEA 3.664427e+03
## 597 CLT SFO 3.691022e+03
## 598 CLT SJU 2.378908e+03
## 599 CLT SLC 2.776641e+03
## 600 CLT TPA 8.197132e+02
## 601 CVG ABE 8.080681e+02
## 602 CVG ABQ 1.994583e+03
## 603 CVG AFW 1.322015e+03
## 604 CVG ANC 4.999221e+03
## 605 CVG ATL 6.028419e+02
## 606 CVG AUS 1.543132e+03
## 607 CVG BDL 1.063259e+03
## 608 CVG BFI 3.157278e+03
## 609 CVG BOS 1.208948e+03
## 610 CVG BQN 2.845674e+03
## 611 CVG BWI 6.908562e+02
## 612 CVG CLT 5.397871e+02
## 613 CVG CVG 0.000000e+00
## 614 CVG DEN 1.718242e+03
## 615 CVG DFW 1.306196e+03
## 616 CVG DTW 3.692404e+02
## 617 CVG ELP 2.121088e+03
## 618 CVG EWR 9.148642e+02
## 619 CVG GSO 5.309934e+02
## 620 CVG HNL 7.130663e+03
## 621 CVG IAH 1.403859e+03
## 622 CVG IND 1.585022e+02
## 623 CVG JFK 9.466975e+02
## 624 CVG LAX 3.054280e+03
## 625 CVG LCK 1.721386e+02
## 626 CVG LRD 1.875375e+03
## 627 CVG MCI 8.669494e+02
## 628 CVG MCO 1.222057e+03
## 629 CVG MEM 6.489103e+02
## 630 CVG MIA 1.531274e+03
## 631 CVG MKE 5.116681e+02
## 632 CVG MSP 9.596955e+02
## 633 CVG OAK 3.256729e+03
## 634 CVG ONT 2.980093e+03
## 635 CVG ORD 4.258517e+02
## 636 CVG PDX 3.174245e+03
## 637 CVG PHL 8.149449e+02
## 638 CVG PHX 2.522788e+03
## 639 CVG RDU 6.279233e+02
## 640 CVG RFD 5.124535e+02
## 641 CVG RIC 6.645019e+02
## 642 CVG RNO 3.005758e+03
## 643 CVG SAN 2.998810e+03
## 644 CVG SAT 1.649778e+03
## 645 CVG SDF 1.345616e+02
## 646 CVG SEA 3.157279e+03
## 647 CVG SFO 3.272719e+03
## 648 CVG SJU 2.916634e+03
## 649 CVG SLC 2.330200e+03
## 650 CVG TPA 1.248353e+03
## 651 DEN ABE 2.473437e+03
## 652 DEN ABQ 5.632812e+02
## 653 DEN AFW 1.008892e+03
## 654 DEN ANC 3.867296e+03
## 655 DEN ATL 1.928735e+03
## 656 DEN AUS 1.250195e+03
## 657 DEN BDL 2.685849e+03
## 658 DEN BFI 1.650139e+03
## 659 DEN BOS 2.818825e+03
## 660 DEN BQN 4.307246e+03
## 661 DEN BWI 2.396176e+03
## 662 DEN CLT 2.150562e+03
## 663 DEN CVG 1.718242e+03
## 664 DEN DEN 0.000000e+00
## 665 DEN DFW 1.033232e+03
## 666 DEN DTW 1.804277e+03
## 667 DEN ELP 9.096554e+02
## 668 ...
SOLUTION.PDF

Answer To This Question Is Available To Download

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here