-1 1+ 2! +... 3! B. (0). (2.59) el – 1 n=0 Comparison of the powers of A gives l'o(0) = 1, B1(0) = -1/2, B2(0) = 1/, B3(0) = 0, B4(0) = -1/30, B5(0) = 0, B6 (0) = 1/42, .... The corresponding...


Explain this


-1<br>1+<br>2!<br>+...<br>3!<br>B. (0).<br>(2.59)<br>el – 1<br>n=0<br>Comparison of the powers of A gives<br>l'o(0) = 1, B1(0) = -1/2,<br>B2(0) = 1/,<br>B3(0) = 0,<br>B4(0) = -1/30, B5(0) = 0, B6 (0) = 1/42, ....<br>The corresponding Bernoulli polynomials are<br>Bo(k) = 1,<br>B1 (k) = k – /2,<br>B2(k) = k2 – k + 1/6,<br>B3(k) = k – 3/2k² + 1/2k,<br>B4(k) = k4 – 2k³ + k? – 1/30,<br>B:(k) = k – 5/2k“ + 5/3k – 1/ok,<br>Be(k) = k° – 3k5 + 5/½k4 – 1/2k? + /42,<br>B7(k) = k

Extracted text: -1 1+ 2! +... 3! B. (0). (2.59) el – 1 n=0 Comparison of the powers of A gives l'o(0) = 1, B1(0) = -1/2, B2(0) = 1/, B3(0) = 0, B4(0) = -1/30, B5(0) = 0, B6 (0) = 1/42, .... The corresponding Bernoulli polynomials are Bo(k) = 1, B1 (k) = k – /2, B2(k) = k2 – k + 1/6, B3(k) = k – 3/2k² + 1/2k, B4(k) = k4 – 2k³ + k? – 1/30, B:(k) = k – 5/2k“ + 5/3k – 1/ok, Be(k) = k° – 3k5 + 5/½k4 – 1/2k? + /42, B7(k) = k" – 7/2k® + 7/½k³ – 7/ok³ + !/ok, Bs(k) = k$ – 4k" + 14/3k® – 7/3k4 + 2/3k? – 1/30, - etc.

Jun 04, 2022
SOLUTION.PDF

Get Answer To This Question

Related Questions & Answers

More Questions »

Submit New Assignment

Copy and Paste Your Assignment Here